

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

GEORGE CAJAZEIRAS SILVEIRA

CONVERSOR *CC-CC BOOST* BASEADO NA CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS PARA ALIMENTAÇÃO DE INVERSORES COM DIVISOR CAPACITIVO

Fortaleza Fevereiro 2011

GEORGE CAJAZEIRAS SILVEIRA

CONVERSOR *CC-CC BOOST* BASEADO NA CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS PARA ALIMENTAÇÃO DE INVERSORES COM DIVISOR CAPACITIVO

Dissertação submetida à Universidade Federal do Ceará como parte dos requisitos para a obtenção do grau de Mestre em Engenharia Elétrica.

Orientador:

Prof. Dr. René Pastor Torrico Bascopé

FORTALEZA Fevereiro 2011

S588c Silveira, George Cajazeiras

Conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo / George Cajazeiras Silveira, 2011.

154 f.; il. enc.

Orientador: Prof. Dr. René Pastor Torrico Bascopé. Área de concentração: Eletrônica de Potência e Acionamentos. Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Tecnologia, Departamento de Engenharia Elétrica, Fortaleza, 2011.

1. Engenharia elétrica. 2. Eletrônica de potência. 3. Controle eletrônico. I. Bascopé, René Pastor Torrico (orient.). II. Universidade Federal do Ceará – Programa de Pós-Graduação em Engenharia Elétrica. IV. Título.

CDD 621.3

GEORGE CAJAZEIRAS SILVEIRA

CONVERSOR CC-CC BOOST BASEADO NA CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS PARA ALIMENTAÇÃO DE INVERSORES COM DIVISOR CAPACITIVO

Esta Dissertação foi julgada adequada para a obtenção de título de Mestre em Engenharia Elétrica, Área de Concentração em Eletrônica de Potência e Acionamentos, e aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal do Ceará.

George Cajazeiras Silveira

Orientador:

Prof. René Pastor Torrico Bascopé

Banca Examinadora:

Prof. Marcus Rogerio de Castro, Dr.

Prof. Demercil de Souza Oliveira Júnior, Dr.

Prof. Francisco Kléber de Araújo Lima, Dr.

Fortaleza, 28 de fevereiro de 2011

"Se a sabedoria entrar no teu coração, e a ciência agradar à tua alma, a reflexão te guardará, e a prudência te conservará, a fim de seres livres do caminho do mau..." Provérbios: Felicidade do sábio.

Dedico esta Dissertação:

A Deus, Por está sempre ao meu lado dando sentido à minha vida;

Aos meus queridos pais José Silveira e Maria Aldemiza, Que através de seus exemplos e bondade tornaram-me capaz de realizar meus sonhos;

> À minha bela e amada esposa Suziane E aos meus queridos filhos George Filho e Giovana Maria, Por me encherem de amor e carinho;

Aos meus adorados irmãos João Arruda, Kátia, Nereida e Roger,

Que sempre estiveram me apoiando.

AGRADECIMENTOS

À minha esposa querida pelo amor, pela compreensão e pelo incentivo para a realização deste trabalho.

Ao professor Dr. René Pastor Torrico Bascopé pela competente e dedicada orientação, pela amizade e por acreditar na minha capacidade de realizar este trabalho.

Ao professor Ms. Carlos Gustavo Castelo Branco pela co-orientação e amizade.

Ao professor Dr. Cícero Marcos Tavares Cruz pela compreensão e extrema competência disponibilizada durante meus trabalhos.

Aos professores Dr. Cláudio Marques de Sá Medeiros, Ms. Manuel Rangel Borges Neto, Ms. Luiz Daniel S. Bezerra, Robney Freitas Fiúza, Esp. Francisco Sales Rodrigues Brandão e Esp. Francisco Mauro Parente de Albuquerque pela ajuda dispensada na realização deste trabalho.

Aos professores Dr. Demercil, Dr. Fernando, Dr. Luiz, Dra. Ruth, Dr. Otacílio e a todos do Departamento de Engenharia Elétrica da UFC, que contribuíram para minha formação.

Aos meus amigos do Grupo de Processamento de Energia e Controle (GPEC) especialmente ao Pedro Augusto, enfim a todos os amigos da Engenharia Elétrica pelo incentivo e sugestões valiosas.

Aos meus pais José Joaquim Silveira e Maria Aldemiza Cajazeiras Silveira e aos meus irmãos João Arruda, Kátia Maria, Maria Nereida e Roger pelo estímulo e apoio em todas as etapas da minha vida. Silveira, G. C. "Conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo", Universidade Federal do Ceará – UFC, 2011, 154p.

Este trabalho apresenta um conversor *CC-CC boost* de alto ganho baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo. O conversor é analisado no modo condução contínua (*MCC*) com razão cíclica maior que 0,5, chaves trabalhando em sobreposição. As principais características deste conversor são: ele opera com alta frequência de comutação, 25kHz, e o indutor de entrada com o dobro da frequência de comutação, com o objetivo de diminuir peso e volume; o esforço de tensão sobre as chaves é menor que a metade da tensão de saída, haja vista serem naturalmente grampeadas por um dos capacitores de saída, permitindo a utilização de transistores *MOSFET* com baixa resistência estática entre dreno e fonte no estado de condução, $R_{DS(on)}$; a corrente de entrada possui pequena ondulação; a tensão de saída pode ser elevada pelo incremento da relação de transformação sem comprometer o esforço de tensão sobre as chaves; a tensão de saída é balanceada e adequada para alimentação de inversores com divisor capacitivo. O princípio de funcionamento, a metodologia de projeto, a simulação e os resultados experimentais de um protótipo de 1kW são apresentados para validar a análise teórica e comprovar o desempenho do conversor.

Palavras-chave: Eletrônica de Potência, Conversor *CC-CC* de Alto Ganho, Conversor *Boost*, Célula de Comutação de Três Estados.

Silveira, G. C. "Boost DC-DC Converter Based on Three-State Switching Cell for Supply Power the Inverters with Capacitive Divisor", Universidade Federal do Ceará – UFC, 2011, 154p.

This work presents a high gain boost *DC-DC* converter based on three-state switching cell for supply power the inverters with capacitive divisor. The converter is analyzed in continuous conduction mode (*CCM*) with a duty cycle value of the switches greater than 0.5, switches working on overlapping mode. The main characteristics of this converter are: It operates with high switching frequency and the input inductor operates with the double of the frequency switching, in order to minimize the system weight and volume, the voltage stress across the switches is lower than a half of the output voltage and naturally clamped by one output capacitor, allowing the use of transistors *MOSFET* with low static drain-to-source on-resistance, $R_{DS(on)}$, the input current is with small ripple, the output voltage stress across the switches, the output voltage is balanced and adequate for supply power the inverters with capacitive divisor. The principle of operation, the design methodology, the simulation and the experimental results of a 1kW prototype are presented to validate the theoretical analysis and demonstrate converter performance.

Keywords: Power Electronics, High Gain DC-DC Converter, Boost Converter, Three-State Switching Cell.

SUMÁRIO

LISTA DE FIGURAS	XI
LISTA DE TABELAS	XVI
SIMBOLOGIA	XVII
INTRODUÇÃO	

CAPÍTULO I

REVISÃO BIBLIOGRÁFICA DE TOPOLOGIAS DE CONVERSORES COM ALTO GANHO DE TENSÃO PROPOSTAS NA LITERATURA TÉCNICA

1.1	Considerações Iniciais	3
1.2	Conversor Push-Pull Alimentado em Corrente	3
1.3	Conversores Boost com Indutores Acoplados	4
1.4	Conversores Boost com Dois Indutores e Transformador Auxiliar ATR	5
1.5	Conversores com Alto Ganho de Tensão Baseados no Boost-Flyback	7
1.6	Conversor Boost de Alto Ganho Usando Técnica de Capacitor Chaveado	8
1.7	Conversores Boost Intercalado	9
1.8	Conversor Boost Quadrático	13
1.9	Geração do Conversor Boost com Célula de Comutação de Três Estados	14
	1.9.1 Definição da Célula de Comutação de Três Estados	14
	1.9.2 Obtenção das Células de Comutação a partir dos Conversores CC-CC Isolados	14
	1.9.3 Conversores <i>Boost</i> Obtidos a partir da Célula de Comutação <i>B</i>	16
1.10	Conversores boost obtidos a partir da Célula de Comutação de Três Estados	17
1.11	Conversor CC-CC Boost Baseado na Célula de Comutação de Três Estados para Alimentação de	
Inver	rsores com Divisor Capacitivo	19
1.12	Considerações Finais	22

CAPÍTULO II

ANÁLISE QUALITATIVA E QUANTITATIVA DO CONVERSOR *CC-CC BOOST* BASEADO NA CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS PARA ALIMENTAÇÃO DE INVERSORES COM DIVISOR CAPACITIVO

Considerações Iniciais	
Topologia	
Etapas de Operação e Principais Formas de Onda	
2.3.1 Descrição das Etapas de Operação	
2.3.2 Principais Formas de Onda	
Análise Teórica	
2.4.1 Característica de Saída	
2.4.2 Análise Quantitativa do Estágio de Potência	
2.4.2.1 Determinação da Ondulação da Corrente e da Indutância do Indutor L ₁	
2.4.2.2 Determinação da Ondulação da Tensão de Saída e das Capacitâncias dos	
Capacitores de Saída	
2.4.2.3 Cálculo dos Esforcos	
Considerações Finais	63
	 Considerações Iniciais Topologia Etapas de Operação e Principais Formas de Onda

CAPÍTULO III

PROCEDIMENTO E EXEMPLO DE PROJETO

Considerações Iniciais	
Especificações do Conversor	
Projeto e Especificação dos Componentes do Conversor	
3.3.1 Cálculo dos Parâmetros Básicos	
3.3.2 Dimensionamento do Indutor de Entrada L_1	
3.3.3 Dimensionamento do Transformador <i>Tr</i>	71
3.3.4 Dimensionamento das Chaves $S_1 \in S_2$	77
	Considerações Iniciais Especificações do Conversor Projeto e Especificação dos Componentes do Conversor

	3.3.5	Dimensionamento dos Diodos $D_1 e D_2$	
	3.3.6	Dimensionamento dos Diodos D_3 , D_4 , D_5 e D_6	
	3.3.7	Dimensionamento do Capacitor C_1	
	3.3.8	Dimensionamento dos Capacitores C_2 , C_3 , $C_4 e C_5$	
	3.3.9	Dimensionamento do Capacitor de Saída C _a	
3.4	Consid	derações Finais	

CAPÍTULO IV

MODELAGEM E PROJETO DO CIRCUITO DE CONTROLE

4.1	Considerações Iniciais	89
4.2	Procedimento para Obtenção do Circuito Equivalente do Conversor.	
4.3	Modelagem Dinâmica	
	4.3.1 Análise Aplicando o Modelo CC da chave PWM	
	4.3.2 Análise Aplicando o Modelo de Pequenos Sinais da Chave PWM (Modelo CA)	
4.4	Controle Modo Corrente Média	
	4.4.1 Malha de Corrente	
	4.4.2 Malha de Tensão	
4.5	Projeto do Circuito de Controle	
	4.5.1 Cálculo dos Parâmetros do Conversor Equivalente	
	4.5.2 Projeto da Malha de Corrente	
	4.5.3 Projeto da Malha de Tensão	
4.6	Considerações Finais	

CAPÍTULO V

RESULTADOS DE SIMULAÇÃO E EXPERIMENTAIS

5.1	Consid	erações Iniciais	123
5.2	Curvas	de Simulação e Experimentais	
	5.2.1	Aquisições	123
	5.2.2	Circuito de Simulação	123
	5.2.3	Protótipo	
	5.2.4	Curvas de Ganho Estático	125
	5.2.5	Tensão sobre os Capacitores de Filtro de Saída	126
	5.2.6	Formas de Onda de Tensão da Entrada e de Corrente do Indutor L_1	127
	5.2.7	Formas de Onda de Tensão e Corrente dos Enrolamentos Primários e Secundários do	
		Transformador	
	5.2.8	Formas de Onda de Tensão e Corrente das Chaves	
	5.2.9	Formas de Onda de Tensão Reversa sobre os Diodos	
	5.2.10	Formas de Onda de Tensão e Corrente de Saída	
	5.2.11	Formas de Onda de Tensão e Corrente de Saída nos Transitórios de Carga	
	5.2.12	Rendimento	
5.3	Consid	erações Finais	141
CO	NCLUS.	ÃO	
REF	FERÊN	CIAS BIBLIOGRÁFICAS	
APÊ	ÈNDICE	2	

LISTA DE FIGURAS

Fig. 1.1 – Conversor push-pull alimentado em corrente	4
Fig. 1.2 – Conversor boost com indutores acoplados	
Fig. 1.3 – Conversor boost proposto em [3]	5
Fig. 1.4 – Conversor boost proposto em [5]	6
Fig. 1.5 – Conversor boost proposto em [6]	
Fig. 1.6 – Conversor boost proposto em [7]	7
Fig. 1.7 – Conversor boost proposto em [9]	7
Fig. 1.8 – Conversor boost proposto em [10]	8
Fig. 1.9 – Conversor boost proposto em [11]	9
Fig. 1.10 – Conversor boost proposto em [12]	
Fig. 1.11 – Conversor boost proposto em [13]	
Fig. 1.12 – Conversor boost proposto em [16]	
Fig. 1.13 – Célula magneticamente acoplada	
Fig. 1.14 – Conversor proposto em [17]	
Fig. 1.15 – Conversor boost proposto em [18]	
Fig. 1.16 – Conversor boost proposto em [20]	
Fig.1.17 – Conversor boost quadrático proposto em [19]	
Fig. 1.18 – Estrutura básica do conversor CC-CC PWM não isolado	
Fig. 1.19 – Obtenção da célula B	
Fig. 1.20 – Estados de funcionamento da célula de comutação de três estados	
Fig. 1.21 – Comandos das chaves S1 e S2	
Fig. 1.22 – Conversor boost obtido a partir da célula de comutação B	
Fig. 1.23 – Conversor boost proposto em [21]	
Fig. 1.24 – Conversor boost proposto em [23]	

Fig. 1.25 – Conversor CC-CC boost baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo.	20
Fig. 1.26 – Inversor duplo meia ponte proposto em [34]	20
Fig. 1.27 – Inversor meia ponte trifásico	21
Fig. 1.28 – Inversor com célula NPC monofásico	21
Fig. 1.29 – Inversor com célula NPC trifásico	22
Fig. 2.1 – Conversor CC-CC boost baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo proposto	24
Fig. 2.2 – Comandos das chaves $S_1 e S_2$	25
Fig. 2.3 - Primeira etapa de operação	26
Fig. 2.4 - Segunda etapa de operação	27
Fig. 2.5 - Terceira etapa de operação	28
Fig. 2.6 – Quarta etapa de operação	29
Fig. 2.7 – Principais formas de onda	30
Fig. 2.8 – Ganho estático em função da razão cíclica do conversor proposto	32
Fig. 2.9 – Ondulação da corrente parametrizada no indutor L_1 em função da razão cíclica D	33
Fig. 2.10 – Corrente drenada pela carga não linear	51
Fig. 2.11 – Potência aparente total processada pelo transformador parametrizada	63
Fig. 3.1 – Circuito equivalente do diodo	80
Fig. 4.1 – 1° passo	90
Fig. 4.2 – 2° passo	91
Fig. 4.3 – 3° passo	92
Fig. 4.4 – 4° passo	94
Fig. 4.5 – 5° passo	94
Fig. $4.6 - 6^{\circ}$ passo	96
Fig. 4.7 – 7º passo (circuito equivalente)	97

Fig. 4.8 – Conversor boost com indicação dos terminais ativo (a), passivo (p) e comum (c)	98
Fig. 4.9 – Circuito equivalente do conversor boost incorporando o modelo CC	.99
Fig. 4.10 – Circuito equivalente do conversor boost em regime permanente	.99
Fig. 4.11 – Circuito equivalente do conversor boost com modelo CA com razão cíclica constante ($\hat{d} = 0$)1	100
Fig. 4.12 – Circuito equivalente do conversor boost com modelo CA com tensão de entrada constante ($\hat{v}_{bat} = 0$	0). 102
Fig. 4.13 – Circuito do conversor boost modelo CA com tensão de entrada e razão cíclica constantes1	03
Fig. 4.14 – Diagrama de blocos do controle modo corrente médial	104
Fig. 4.15 – Compensador de corrente e sua resposta em frequência	107
Fig. 4.16 – Curva avanço de fase α em função do fator K1	08
Fig. 4.17 – Divisor de tensão para amostragem da tensão de saída1	10
Fig. 4.18 – Compensador de tensão e sua resposta em frequêncial	111
Fig. 4.19 – Diagrama de bode da função de transferência $FTLA_{sci}(s)$ 1	15
Fig. 4.20 – Diagrama de bode da função de transferência $C_i(s)$ 1	17
Fig. 4.21 – Diagrama de bode da função de transferência $FTLA_{cci}(s)$ 1	18
Fig. 4.22 – Diagrama de bode da função de transferência $FTLA_{scv}(s)$ 1	19
Fig. 4.23 – Diagrama de bode da função de transferência $C_V(s)$ 1	21
Fig. 4.24 – Diagrama de bode da função de transferência $FTLA_{ccv}(s)$ 1	22
Fig. 5.1 – Circuito simulado1	24
Fig. 5.2 – Fotografia do protótipo implementado1	25
Fig. 5.3 – Ganho estático teórico, simulado e experimental1	26
Fig. 5.4 – Formas de onda de tensão de entrada V_{bat} e corrente do indutor I_{L1} simuladas	28
Fig. 5.5 – Formas de onda de tensão de entrada V_{bat} e corrente do indutor I_{L1} experimentaisl	128
Fig. 5.6 – Formas de onda de tensão e de corrente do enrolamento primário V_{Lp1} e I_{Lp1} simuladasl	29

Fig. 5.7 – Formas de onda de tensão e de corrente do enrolamento primário V_{Lp1} e I_{Lp1} experimentais12	9
Fig. 5.8 – Formas de onda de tensão e de corrente do enrolamento primário V_{Lp2} e I_{Lp2} simuladas13	0
Fig. 5.9 – Formas de onda de tensão e de corrente do enrolamento primário V_{Lp2} e I_{Lp2} experimentais13	0
Fig. 5.10 – Formas de onda de tensão e de corrente do enrolamento secundário V_{Ls1} e I_{Ls1} simuladas13	1
Fig. 5.11 – Formas de onda de tensão e de corrente do enrolamento secundário V_{Ls1} e I_{Ls1} experimentais13	1
Fig. 5.12 – Formas de onda de tensão e de corrente do enrolamento secundário V_{Ls2} e I_{Ls2} simuladas	2
Fig. 5.13 – Formas de onda de tensão e de corrente do enrolamento secundário V_{Ls2} e I_{Ls2} experimentais13	32
Fig. 5.14 – Formas de onda de tensão e de corrente da chave S_1 , V_{SI} e I_{SI} , simuladas	3
Fig. 5.15 – Formas de onda de tensão e de corrente da chave S_1 , V_{SI} e I_{SI} , experimentais	3
Fig. 5.16 – Formas de onda de tensão reversa sobre os diodos D_1 e D_2 , V_{D1} e V_{D2} , simuladas	1
Fig. 5.17 – Formas de onda de tensão reversa sobre os diodos D_1 e D_2 , V_{D1} e V_{D2} , experimentais	4
Fig. 5.18 – Formas de onda de tensão reversa sobre os diodos D_4 e D_6 , V_{D4} e V_{D6} , simuladas	5
Fig. 5.19 – Formas de onda de tensão reversa sobre os diodos D_4 e D_6 , V_{D4} e V_{D6} , experimentais	5
Fig. 5.20 – Formas de onda de tensão e corrente de saída V_{bar} e I_{bar} simuladas	6
Fig. 5.21 – Formas de onda de tensão e corrente de saída V_{bar} e I_{bar} experimentais	6
Fig. 5.22 – Tensão e corrente de saída V_{bar} e I_{bar} simuladas para degrau de carga de 100% para 10%13	7
Fig. 5.23 – Tensão e corrente de saída V_{bar} e I_{bar} experimentais para degrau de carga de 100% para 10%13	7
Fig. 5.24 – Tensão e corrente de saída V_{bar} e I_{bar} simuladas para degrau de carga de 10% para 100%130	8
Fig. 5.25 – Tensão e corrente de saída V_{bar} e I_{bar} experimentais degrau de carga de 10% para 100%138	8
Fig. 5.26 – Formas de onda de tensão e corrente de saída V_{bar} e I_{bar} simuladas a vazio)
Fig. 5.27 – Formas de onda de tensão e corrente de saída V_{bar} e I_{bar} experimentais a vazio	9
Fig. 5.28 – Formas de onda de tensão da saída V_{bar} e dos capacitores de filtro de saída V_{Col} e V_{Co2} e de corrent da saída I_{bar} e da entrada I_{bar} com carga não linear. linear e sem carga (a vazio)	te)

Fig. 5.29 – Curvas de rendimento em função da potência de saída $P_{ m bar}$ para tensões de entrada mínima 42V,	
nominal 48V e máxima 54V	140
Fig. A.1 – Circuito de potência do conversor	152
Fig. A.2 – Conectores	153
Fig. A.3 – Placa com circuito impresso com silhueta de componentes - vista superior	154
Fig. A.4 – Placa com circuito impresso com silhueta de componentes - vista inferior	154

LISTA DE TABELAS

Tabela 2.1 – Esforços de tensão nos diodos do conversor genérico	44
Tabela 2.2 – Esforços de tensão nos diodos do conversor	44
Tabela 3.1 – Especificações do projeto	64
Tabela 3.2 – Parâmetros adotados para o projeto	64
Tabela 3.3 – Parâmetros de projeto do indutor L_1	67
Tabela 3.4 – Características do núcleo EE-55/28/21 – IP12	68
Tabela 3.5 – Características do fio escolhido 22 AWG	69
Tabela 3.6 – Resultados do projeto do indutor L_1	70
Tabela 3.7 – Parâmetros para o cálculo das perdas no núcleo	70
Tabela 3.8 – Parâmetros de projeto do transformador Tr	74
Tabela 3.9 – Características do núcleo EE-65/33/26 – IP12	74
Tabela 3.10 – Resultados do projeto do transformador Tr	76
Tabela 3.11 – Parâmetros para o cálculo das perdas no núcleo	77
Tabela 3.12 – Características do transistor HEXFET [®] Power MOSFET IRFP4227PbF	79
Tabela 3.13 – Características do diodo ultra-rápido HFA15PB60	82
Tabela 3.14 – Especificação do capacitor C_1	85
Tabela 3.15 – Especificação do capacitor C ₀	87
Tabela 4.1 – Parâmetros do conversor equivalente	114
Tabela 4.2 – Especificações para malha de corrente	114
Tabela 5.1 – Tensões sobre os capacitores de filtro de saída Co1 e Co2 com carga equilibrada e desequi em malha aberta	ilibrada 127
Tabela 4.2 – Tensões sobre os capacitores de filtro de saída Co1 e Co2 com carga equilibrada e desequi em malha fechada	ilibrada 127

SIMBOLOGIA

Símbolo	Significado	Unidade
Δ	Profundidade de penetração da corrente	ст
$\Delta B_{(\max)}$	Variação máxima da densidade de fluxo magnético no núcleo	Т
ΔI_{C1}	Ondulação de corrente que circula através do capacitor C_1	A
$\Delta I_{C_{2j}}$	Ondulação de corrente que circula através do capacitor C_{2i}	A
$\Delta I_{C_{2j+1}}$	Ondulação de corrente que circula através do capacitor $C_{2,j+1}$	A
ΔI_{L1}	Ondulação de corrente no modo de condução contínua no indutor L_1	A
$\overline{\Delta I}_{L1}$	Ondulação de corrente no modo de condução contínua no indutor L_1 normalizada	A
$\Delta I_{L1(max)}$	Ondulação máxima de corrente através do indutor L_1	A
$\%IL_{med}$	Percentual de corrente média através do indutor L_1	A
$\overline{\Delta V_C}$	Ondulação da tensão parametrizada no barramento CC	V
$\Delta V_{bar(max)}$	Ondulação máxima da tensão no barramento CC	V
ΔV_{c1}	Ondulação de tensão do capacitor C_1	V
$\Delta V_{C_{2,j}}$, $\Delta V_{C_{2,j+1}}$	Ondulação de tensão do capacitor $C_{2,j}$ e $C_{2,j+1}$	V
ΔT_{L1}	Elevação de temperatura	°C
$\Delta W_{(C_o)}$	Energia que o capacitor deve fornecer durante hold-up time	J
$lpha_{_{V}}$	Avanço de fase requerido da malha de tensão	0
$lpha_{_i}$	Avanço de fase requerido da malha de corrente	0
μ_o	Permeabilidade do vácuo	H/m
η	Rendimento	-
$A_w.A_e$	Produto das áreas do núcleo e da janela	cm^4
A_{e}	Área efetiva da perna central do núcleo de ferrite	cm^2
A_{w}	Área efetiva da janela do núcleo de ferrite	cm^2

a_j	Relação de transformação entre o número de espiras do enrolamento secundário j	-
$B_{(max)}$	Máxima densidade de fluxo magnético	Т
$C_1, C_2, C_3, C_4 \text{ e } C_5$	Capacitores de filtro de saída	F
$C_o, C_{o1} \in C_{o2}$	Capacitores do barramento CC	F
C_{eq_p}	Capacitância equivalente de saída referida ao primário	F
C_{2j}, C_{2j+1}	Capacitores genéricos dos secundários do Tr	F
C_{1i}, C_{2i}	Capacitâncias do compensador de corrente	F
$C_{1\nu}, C_{2\nu}$	Capacitores do compensador de tensão	F
$C_i(s)$	Função de transferência do compensador de corrente	-
$C_{\nu}(s)$	Função de transferência do compensador de tensão	-
D	Razão cíclica	-
D'	Razão cíclica complementar	-
$D_{(min)}$	Razão cíclica mínima	-
D_n	Razão cíclica nominal	-
$D_{(max)}$	Razão cíclica máxima	-
D_{eq}	Razão cíclica do boost equivalente	-
D_{sem_isol}	Diâmetro sem isolamento	ст
D_{com_isol}	Diâmetro com isolamento	ст
$D_{con(\max)}$	Diâmetro máximo do condutor	ст
$D_1, D_2, D_3, D_4, D_5 \text{ e } D_6$	Diodos retificadores	-
f	Frequência de comutação	Hz
$f_{\scriptscriptstyle eq}$	Frequência do boost equivalente	Hz
$f_{_{L1}}$	Frequência de operação do indutor L_1	Hz
f_{Tr}	Frequência de operação do transformador Tr	Hz
$f_{p1i}, f_{p2i}, f_{p1v}, f_{p2v}$	Frequência dos pólos 1 e 2 das malhas de corrente e tensão	Hz
f_{zi}, f_{zv}	Frequência do zero das malhas de corrente e tensão	Hz
f_{ci}, f_{cv}	Frequência de cruzamento das malhas de corrente e tensão	Hz
F_{c}	Fator de correção considerando o fluxo de borda no núcleo	-

F_m	Ganho do modulador PWM	-
$FTMA_i$	Função de transferência em malha aberta da planta de corrente	-
$FTLA_{sci}(s)$	Função de transferência de laço aberto da malha de corrente sem compensador	-
$FTLA_{cci}(s)$	Função de transferência de laço aberto da malha de corrente com compensador	-
$FTMF_i(s)$	Função de transferência de malha fechada da malha de corrente	-
$FTLA_{scv}(s)$	Função de transferência de laço aberto da malha de tensão sem compensador	-
$FTLA_{ccv}(s)$	Função de transferência de laço aberto da malha de tensão com compensador	-
G	Altura da janela do núcleo de ferrite	ст
$G_{_V}$	Ganho estático do conversor	-
$G_i(s)$	Função de transferência do conversor boost	-
$G_{_{dif}}$	Ganho do amplificador diferencial	-
$G_{c}(s)$	Bloco externo	-
$G_{ci}dB$	Ganho do compensador de corrente	dB
G_{ci}	Ganho do compensador de corrente em valor absoluto	-
$G_{cv}dB$	Ganho do compensador de tensão	dB
G_{cv}	Ganho do compensador de tensão em valor absoluto	-
$H_e(s)$	Função de transferência matemática para testar robustez da malha de corrente	-
$H_i(s)$	Função de transferência do elemento de medição de corrante (ganho de amostragem de corrante)	-
$H_{v}(s)$	Função de transferência do elemento de medição de tensão	-
$I_{L1}(t)$	Corrente instantânea que circula através do indutor boost	A
I_{Llef}	Corrente eficaz que circula através do indutor boost	A
$I_{L1(min)}$	Corrente mínima através do indutor boost	A
$I_{L1(max)}$	Corrente máxima através do indutor boost	Α
$I_{L1(med)}$	Corrente média através do indutor boost	A
$I_{Lp(max)}$	Corrente máxima que circula através de cada enrolamento do primário do transformador Tr	A
I_{Lp1ef}, I_{Lp2ef}	Corrente eficaz que circula através de cada enrolamento do primário do transformador Tr	A
$I_{Lp1}(t), I_{Lp2}(t)$	Corrente instantânea que circula através de cada enrolamento do primário do transformador Tr	A

$I_{Ls1ef(max)}, I_{Ls2ef(max)}$	Correntes eficazes máximas que circulam através de cada enrolamento do secundário do transformador Tr	A
$I_{Ls1(max)}, I_{Ls2(max)}$	Correntes máximas que circulam através de cada enrolamento do secundário do transformador Tr	A
I_{Lsjef}	Corrente eficaz que circula através de cada enrolamento do secundário j do transformador Tr	A
$I_{Lsj}(t)$	Corrente instantânea que circula através de cada enrolamento do secundário j do transformador Tr	A
$I_{Lsj(max)}$	Corrente máxima que circula através de cada enrolamento do secundário j do transformador Tr	A
I_{c1}	Corrente de descarga do capacitor C_1	A
I_{bar}	Corrente de saída do conversor	A
$I_{_{bar}e\!f}$	Corrente eficaz drenada pela carga alimenta pelo capacitor C_o	A
$I_{S1}(t), I_{S2}(t)$	Corrente instantânea que circula através de cada uma das chaves $S_1 \in S_2$	A
I_{S1ef} , I_{S2ef}	Corrente eficaz que circula através de cada uma das chaves $S_1 \in S_2$	A
$I_{S1(med)}, I_{S2(med)}$	Corrente média que circula através de cada uma das chaves $S_1 \in S_2$	A
$I_{S1(max)}, I_{S2(max)}$	Corrente máxima que circula através de cada chave S_1 e S_2	A
$I_{D1}(t), I_{D2}(t)$	<i>Correntes instantâneas que circulam através dos diodos D</i> $_1$ <i>e D</i> $_2$	A
I_{Dlef}, I_{D2ef}	Corrente eficaz que circula através dos diodos D_1 e D_2	A
$I_{D1(med)}, I_{D2(med)}$	Corrente média que circula através dos diodos D_1 e D_2	A
$I_{D1(max)}, I_{D2(max)}$	Corrente máxima de pico repetitivo através dos diodos D_1 e D_2	A
$I_{D3}(t), I_{D4}(t), I_{D5}(t), I_{D6}(t)$	Correntes instantâneas dos diodos D_3 , D_4 , D_5 e D_6	A
$I_{D_{2j+1}}(t), I_{D_{2j+2}}(t)$	Corrente instantânea nos diodos $D_{2,j+1}$ e $D_{2,j+2}$	A
$I_{D_{2j+1}(med)}, I_{D_{2j+2}(med)}$	Corrente média nos diodos D_{2j+1} e D_{2j+2}	A
$I_{D_{2j+1}ef},I_{D_{2j+2}ef}$	Corrente eficaz nos diodos $D_{2,j+1}$ e $D_{2,j+2}$	A
$I_{D_{2j+1}(max)}, I_{D_{2j+2}(max)}$	Corrente máxima nos diodos $D_{2,j+1}$ e $D_{2,j+2}$	A
$I_{C1}(t)$	Corrente instantânea no capacitor C_1	A
$I_{C_{2j}}(t)$	<i>Corrente instantânea que circula através do capacitor C</i> _{2,j}	A
$I_{C_{2j+1}}(t)$	Corrente instantânea que circula através do capacitor $C_{2,j+1}$	A
I_{Clef}	Corrente eficaz no capacitor C_1	A
$I_{C_{2i}e\!f}$	Eficaz que circula através do capacitor $C_{2,j}$	A
$I_{C_{2j+1}ef}$	Corrente eficaz que circula através do capacitor $C_{2,j+1}$	A
$J_{(max)}$	Máxima densidade de corrente elétrica	A/cm^2
K_{t}	Fator de topologia	-

K_{H}	Coeficiente de perdas por histerese	-
$K_{\scriptscriptstyle E}$	Coeficiente de perdas por correntes parasitas	-
K_{u}	Fator de utilização da área da janela do núcleo	-
K_w	Fator de utilização da área da janela do núcleo adotado	-
K_{p}	Fator de utilização do primário	-
$K_{\scriptscriptstyle difi}$	Ganho do amplificador diferencial	-
L_1	Indutor boost	Н
L _{1(crit)}	Indutância crítica	Н
L_{p1}, L_{p2}	Indutâncias dos primários do transformador Tr	Н
$l_{g(total)}$	Total do entreferro	ст
MF_i, MF_v	Margem de Fase	°C
MLT	Comprimento médio de uma espira	ст
<i>n</i> _{autotrafo}	Relação de transformação do autotransformador.	-
$N_{_{L1}}$	Número de espiras do indutor boost	esp
N_{Lp1}, N_{Lp2}	Número de espiras de cada primário L_{p1} e L_{p2}	esp
$N_{{\scriptscriptstyle L}{\scriptscriptstyle s}{\scriptscriptstyle j}}$	Número de espiras de cada secundário L_{sj}	esp
n _{cond}	Número de condutores	-
P_{v}	Defasagem provocada pelo sistema	$^{o}\!C$
P_{bat}	Potência de entrada	W
P_{bar}	Potência máxima de saída	W
P_{cobre}	Perdas no cobre do transformador Tr	W
$P_{cond}_{S1}, P_{cond}_{S2}$	Perda em condução das chaves $S_1 e S_2$	W
$P_{com_{S1}}, P_{com_{S2}}$	Perda na comutação das chaves $S_1 e S_2$	W
P_{cond_D1}, P_{cond_D2}	Perda em condução dos diodos D ₁ e D ₂	W
P_{com_D1}, P_{com_D2}	Perda na comutação dos diodos D_1 e D_2	W
$P_{D1(total)}, P_{D2(total)}$	Perda total dos diodos D_1 e D_2	W
$P_{S1(total)}, P_{S2(total)}$	Perda total das chaves $S_1 e S_2$	W
P_{nucleo}	Perdas no núcleo de ferrite	W

$P_{L1(total)}$	Perdas totais no indutor L_1	W
ľ _e	Resistência equivalente vista entre os terminais ativo e passivo	Ω
R_l	Resistência linear a 100°C	Ω /cm
R_{se_p}	Resistência série equivalente	Ω
R_{sh}	Resistência do sensor de corrente (resistor shunt)	Ω
R_{1i} , R_{2i}	Resistências do compensador de corrente	Ω
$R_{1\nu}$, $R_{2\nu}$	Resistência do compensador de tensão	Ω
R_{bar_p}	Resistência equivalente de saída referida ao primário	Ω
R _{cobre}	Resistência do cobre	Ω
$R_{termica_nucleo}$	Resistência térmica do núcleo	°C/W
$R_{\theta SA_S1}, R_{\theta SA_S2}$	Resistência térmica máxima entre o dissipador e o ambiente da chaves $S_1 \in S_2$	°C/W
$R_{ heta SA_para_D1 \ e \ D2}$	Resistência térmica máxima entre o dissipador e o ambiente dos diodos D_1 e D_2	°C/W
$S_{_{L1}}$	Área da seção transversal necessária para conduzir a corrente do indutor boost	cm^2
S_{sem_isol}	Área seção transversal sem isolamento	cm^2
S_{com_isol}	Área seção transversal com isolamento	cm^2
S_{Lp1}	Área da seção transversal necessária para conduzir a corrente dos enrolamentos primários	cm^2
$S_{{\scriptscriptstyle L}{\scriptscriptstyle s}{\scriptscriptstyle j}}$	Área da seção transversal necessária para conduzir a corrente dos enrolamentos secundários L _{sj}	cm^2
$S_{transf_dir(2^a \ etapa)}, \ S_{transf_dir(4^a \ etapa)}$	Potência aparente transferida diretamente	VA
$S_{transf_ind(2^{a}\ etapa)}, \ S_{transf_ind(4^{a}\ etapa)}$	Potência aparente transferida do primário L_{p2} ao L_{pl} , por indução eletromagnética	VA
$S_{total(2^a etapa)}, \ S_{total(4^a etapa)}$	Potência aparente total transferida do primário L_{p2} ao L_{p1}	VA
$S_{proc_prim(2^{a} etapa)},$ $S_{proc_prim(4^{a} etapa)},$ $S_{proc_sec(2^{a} etapa)},$ $S_{proc_sec(4^{a} etapa)}$	Potência aparente processada pelos primários e secundários	VA

$S_{proc_prim(total)},$	Potência aparente total processada pelos primários e	
$S_{proc_sec(total)}$	secundários	VA
$S_{\it proc_Tr(total)}$	Potência aparente total processada pelo transformador	VA
$\overline{S_{\textit{proc}_Tr(total)}}$	Potência aparente total processada pelo transformador normalizada	VA
t_h	Hold-up time	S
T_a	Temperatura ambiente	$^{o}\!C$
T_{j}	Temperatura de junção	°C
T_r	Transformador	-
UGF_i	Frequência de ganho unitário do compensador de corrente	Hz
V_D	Amplitude da onda dente de serra	V
$V_{bat(min)}$	Tensão de entrada mínima	V
V_{bat}	Tensão de entrada nominal	V
$V_{bat(max)}$	Tensão de entrada máxima	V
V_{bar}	Tensão de saída	V
V_{bar_P}	Tensão equivalente de saída referida ao primário	V
$V_{Lp(max)}, V_{Lsj(max)}$	Tensões máximas sobre os enrolamentos primários e secundários do transformador Tr	V
$V_{\it Lpef}$, $V_{\it Lsjef}$	Tensões eficazes dos primários e dos secundários do transformador Tr	V
$V_{S1(max)}, V_{S2(max)}$	Tensão máxima sobre as chaves $S_1 e S_2$	V
$V_{C1(max)}$	Tensão máxima sobre o capacitor C_1	V
$V_{C_{2.j}(max)}, V_{C_{2.j+1}(max)}$	Tensões dos demais capacitores do conversor	V
V_{C_o}	Tensão sobre o capacitor C_0	V
V_{refV}	Tensão de referência de tensão	V
V_{refi}	Tensão de referência (de saída do amplificador diferencial)	V
$V_{D1(max)}, V_{D2(max)}$	Tensão reversa máxima sobre os diodos D_1 e D_2	V
V_{FO}	Tensão de limiar dos diodos	V
V_{e}	Volume efetivo do núcleo	cm ³
$Z_v(s)$	Função de transferência da tensão de saída perturbando a corrente no indutor	-

Símbolos utilizados nos diagramas de circuitos

Símbolo	Significado
С	Capacitor
D	Diodo
L	Indutor
S	Chave - transistor
R	Resistor
V	Tensão
Ι	Corrente

Acrônimos e Abreviaturas

Símbolo	Significado
AWG	American Wire Gage
CA	Corrente Alternada
CC	Corrente Contínua
EMI	Electromagnetic Interference
hold-up time	Tempo de sustentação da tensão de saída
MOSFET	Metal-Oxide-Semiconductor Field-Effect Transistor
PWM	Pulse Width Modulation
RSE	Resistência Série Equivalente
TDH	Taxa de Distorção Harmônica
UFC	Universidade Federal do Ceará

Símbolos de unidades de grandezas físicas

Símbolo	Significado
Ω	Ohm
A	Ampère
ст	centímetro
dB	Decibel
F	Farad
Н	Henry
Hz	Hertz
S	segundo
Т	Tesla
V	Volt
W	Watt

Subscritos utilizados

Subscritos	Significado
bat	Grandeza bateria.
bar	Grandeza barramento CC
ef	Valor eficaz da grandeza.
max	Valor máximo da grandeza.
med	Valor médio da grandeza.
min	Valor mínimo da grandeza.

INTRODUÇÃO

Diversas aplicações, tais como: sistema ininterrupto de energia e acionamentos de motores, necessitam, frequentemente, elevar um baixo nível de tensão de entrada, normalmente com valores entre 12V e 125V, provenientes de baterias, paineis solares fotovoltaicos, células de combustível, pequenos geradores eólicos, entre outros, para valores de tensão entre 300V e 400V, constituindo um barramento *CC* requerido para alimentação de seus inversores de tensão [22]. Para estas aplicações o conversor *boost* não é uma boa escolha, pois a alta tensão de saída exige uma elevada razão cíclica, obrigando o diodo de saída a conduzir por pequenos períodos em cada ciclo de comutação com elevada intensidade de corrente, resultando num sério problema de recuperação reversa. Uma alternativa seria a utilização de conversores *boost* em cascata, porém esta solução apresenta como desvantagens o aumento da complexidade do circuito e a diminuição do rendimento, haja vista os vários estágios necessários para o processamento de energia [48].

Para superar estas desvantagens, algumas soluções usando conversores com alto ganho de tensão, apresentando diversas topologias, foram propostas na literatura. Algumas delas serão analisadas neste trabalho.

Este trabalho tem por objetivo apresentar o estudo, a metodologia de projeto e a implementação de um conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo com as seguintes especificações: tensão de entrada de 42V a 54V, sendo o valor nominal 48V, frequência de chaveamento 25kHz, tensão de saída 400V, potência de saída 1kW e rendimento teórico esperado 93%.

No capítulo I é apresentada a revisão bibliográfica de topologias de conversores *boost* com alto ganho de tensão propostas na literatura técnica, onde é realizada uma descrição geral das diversas topologias, evidenciando-se suas vantagens e desvantagens. A análise qualitativa e quantitativa do conversor proposto é feita no capítulo II. Já o capítulo III apresenta a metodologia de projeto detalhada, baseado principalmente no equacionamento desenvolvido no capítulo anterior. A metodologia e o projeto do circuito de controle são apresentados no capítulo IV, onde são descritos: procedimento para obtenção do circuito equivalente, modelagem dinâmica, controle modo corrente média e projeto das malhas de corrente e de tensão do conversor. No capítulo V são apresentados os resultados de simulação e

experimentais do conversor implementado. Finalmente, são apresentadas as conclusões deste trabalho, o apêndice com os esquemáticos dos circuitos projetados e montados em laboratório e as referências bibliográficas utilizadas no desenvolvimento desta dissertação.

CAPÍTULO I

REVISÃO BIBLIOGRÁFICA DE TOPOLOGIAS DE CONVERSORES COM ALTO GANHO DE TENSÃO PROPOSTAS NA LITERATURA TÉCNICA

1.1 CONSIDERAÇÕES INICIAIS

Este capítulo tem como objetivo apresentar a revisão bibliográfica das diversas topologias de conversores destinados às aplicações que exigem alto ganho de tensão, destacando-se suas vantagens e desvantagens. Também apresentar o conversor *boost* a partir da célula de comutação de três estados e a topologia do conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo proposto neste trabalho.

1.2 CONVERSOR PUSH-PULL ALIMENTADO EM CORRENTE

O conversor *push-pull* convencional é empregado em baixas potências, é recomendado para aplicações com baixa tensão de entrada, já que as chaves devem suportar o dobro do valor da tensão de entrada [43]. Tendo como principais desvantagens: a indutância de dispersão do transformador isolado que pode causar sobretensões sobre as chaves controladas durante a comutação, exigindo circuitos grampeadores para proteção das chaves e a possibilidade de saturação do transformador, devido à construção assimétrica do transformador e aos tempos de condução das chaves não serem idênticos [22].

Quando o conversor *push-pull* é alimentado em corrente, através de um indutor, elimina-se o problema da saturação, pois o valor médio da corrente no indutor é constante e isto garante que ao longo de um período de chaveamento ocorrerá a completa desmagnetização do transformador [43]. Porém, ainda persiste o problema da indutância de dispersão. Assim, a alta corrente de entrada associada a componentes não ideais do circuito operando com comutação dissipativa reduz a eficiência do conversor. Atualmente a técnica de grampeamento ativo é usada nos conversores isolados alimentado em corrente, operando com comutação suave, mas esta alternativa apresenta como desvantagem grande esforço de tensão sobre as chaves [3].

A Fig. 1.1 mostra o conversor *push-pull* alimentado em corrente.

Fig. 1.1 – Conversor push-pull alimentado em corrente.

1.3 CONVERSORES *BOOST* COM INDUTORES ACOPLADOS

Conversores com indutores acoplados podem ter, facilmente, alto ganho de tensão sem a necessidade de razão cíclica extrema, mas sua eficiência é degradada pelas perdas associadas à indutância de dispersão. Outra grande desvantagem é a corrente de entrada pulsada, que exige emprego de filtro de entrada [2].

Conversores com indutores acoplados, tais como os conversores *flyback* e o *SEPIC* isolado, são bons candidatos para aplicações que exigem alto ganho de tensão. Porém, a indutância de dispersão causa grande esforço de tensão sobre a chave, perdas de comutação e grave problema de *EMI* [2]. A Fig. 1.2 mostra a estrutura do conversor *boost* com dois indutores acoplados.

Fig. 1.2 – Conversor boost com indutores acoplados.

Em [2], [3] e [4] é proposta uma família de conversores com indutores acoplados de alto ganho modo grampeado. Neles é adicionado um circuito de grampeamento composto pelo diodo Dg e pelo capacitor Cg. A Fig. 1.3 apresenta a topologia do conversor *boost* da família de conversores com indutores acoplados proposta em [3].

Fig. 1.3 – Conversor boost proposto em [3].

Dentre as vantagens desta família de conversores, podem ser destacadas:

- Alto ganho de tensão, sem exigir uma razão cíclica extrema;
- Permite a reutilização da energia de dispersão;
- Esforço reduzido de tensão sobre a chave, devido ao circuito de grampeamento.

Mas, apresenta desvantagens importantes, como:

- Corrente pulsante através do lado primário do indutor acoplado;
- Esforço elevado de corrente através do capacitor de grampeamento.

1.4 CONVERSORES *BOOST* COM DOIS INDUTORES E TRANSFORMADOR AUXILIAR *ATR*

Em [5] é apresentado um conversor *boost* com dois indutores e transformador auxiliar *ATR*, sendo que a fonte de alimentação e carga não possuem a mesma referência e em [6] é apresentado o mesmo conversor, mas a fonte de alimentação e a carga possuem a mesma referência. Estes conversores empregam um transformador auxiliar com razão cíclica unitária no qual circula as correntes dos dois indutores, de forma que ambos indutores conduzem correntes idênticas. Para aumentar o ganho, o lado de saída do circuito é configurado como um retificador duplicador de tensão. As Figs. 1.4 e 1.5 mostram as topologias propostas em [5] e em [6], respectivamente.

Fig. 1.4 – Conversor boost proposto em [5].

Fig. 1.5 – Conversor boost proposto em [6].

Como vantagens relevantes podem ser citadas:

- Corrente de entrada com baixa ondulação;
- Tensão máxima sobre as chaves metade da tensão de saída, pois são grampeadas pelos capacitores de filtro;
- Alta eficiência, podendo ser maior que 90%.

Entretanto, apresentam desvantagens, como:

- Topologia proposta em [5]: deverá ser adotada isolação da amostra de tensão de saída ou utilização de circuitos de comando isolados para as chaves;
- Topologia proposta em [6]: toda corrente da carga circula através dos capacitores, podendo comprometer o desempenho do sistema em relação às falhas, diminuindo sua confiabilidade;
- Para operação adequada do conversor, a tensão de saída deverá ser, no mínimo, quatro vezes maior que a tensão de entrada, devendo os capacitores de saída

serem pré-carregados durante um período na partida. Esta pré-carga deve ser implementada através do projeto adequado do circuito de controle;

 Uma abertura simultânea das chaves pode causar uma falha grave do circuito, já que a energia armazenada nos indutores não teria caminho de descarga. Então, deverá ser adicionado ao circuito do conversor um circuito de proteção para possibilitar a descarga desta energia.

1.5 CONVERSORES COM ALTO GANHO DE TENSÃO BASEADOS NO *BOOST-FLYBACK*

Em [7], [8], [9] e [10] são propostos conversores com alto ganho estático, baseados no *boost-flyback*. Têm topologias semelhantes às apresentadas em [2], [3] e [4].

Pode-se citar como vantagem relevante:

• Esforço de tensão sobre a chave naturalmente grampeado pelo capacitor de filtro de saída.

E com desvantagem relevante:

• Corrente de entrada pulsante, sendo necessário filtro *LC* de entrada.

As Figs. 1.6 e 1.7 mostram os conversores de alto ganho estático baseado na topologia do *boost-flyback* proposto em [7] e [9], respectivamente.

Fig. 1.6 – Conversor boost proposto em [7].

Fig. 1.7 – Conversor boost proposto em [9].

Em [10] é apresentado um conversor *boost* com alto ganho com multiplicador de tensão e indutor acoplado. A tensão de saída poderá ser incrementada proporcionalmente ao incremento do multiplicador de tensão e, da mesma forma, se a relação de transformação for incrementada. A Fig.1.8 mostra a topologia do conversor proposto.

Fig. 1.8 – Conversor boost proposto em [10].

Vantagens deste conversor:

- Perdas mais baixas que as dos conversores *flyback* e *boost* em cascata;
- Esforço de tensão sobre a chave grampeado pelo capacitor C_3 .

Desvantagens deste conversor:

- Relação de transformação elevada resulta em baixa eficiência;
- Muitas etapas do multiplicador aumentam o número de diodos e as perdas por condução;
- Corrente de entrada pulsante, sendo necessário filtro LC.

1.6 CONVERSORES *BOOST* DE ALTO GANHO USANDO TÉCNICA DE CAPACITOR CHAVEADO

Os conversores apresentados em [11] e [12] usam a técnica de capacitor chaveado para elevar a tensão de entrada até o nível desejado. As desvantagens são: emprego de muitos capacitores e elevado esforço de sobre as chaves, limitando sua aplicação a conversores de baixa potência.

As topologias dos conversores apresentados em [11] e [12] são mostradas nas Figs. 1.9 e 1.10, respectivamente.

Fig. 1.9 – Conversor boost proposto em [11].

Fig. 1.10 – Conversor boost proposto em [12].

1.7 CONVERSORES BOOST INTERCALADO

Em [13] e [14] é proposto um conversor *boost* intercalado integrado com capacitores multiplicadores em série. Estes capacitores apresentam comportamento semelhante quando comparado com os capacitores série do conversor *SEPIC*, mas permitindo um alto ganho estático.

Apresenta como vantagens:

- Corrente de entrada com baixa ondulação;
- Esforço de tensão sobre as chaves metade da tensão de saída.

E como desvantagem importante:

 Corrente elevada através dos capacitores série, quando são processados altos níveis de potência.

A Fig. 1.11 mostra o conversor *boost* intercalado integrado com capacitores multiplicadores em série proposto em [13].

Fig. 1.11 – Conversor boost proposto em [13].

Em [16] é proposto um conversor *boost* intercalado em associação com um retificador dobrador de tensão e indutores acoplados, a fim de alcançar alto ganho de tensão.

A topologia do conversor proposto em [16] é mostrada na Fig. 1.12.

Fig. 1.12 – Conversor boost proposto em [16].

Apresenta como vantagens:

- Corrente de entrada com baixa ondulação;
- Tensão máxima sobre as chaves é a mesma de um conversor *boost* convencional, permitindo o uso de transistores *MOSFET'S* com baixa resistência estática entre dreno e fonte em estado de condução, *R_{DS(on)}*;
- Alta densidade de potência.

E como principal desvantagem:

• Indutância de dispersão considerável, sendo necessário o emprego de filtro LC.

Em [17] é proposto um conversor *boost* intercalado com alto ganho de tensão. Sua topologia é composta por uma célula magneticamente acoplada, cujo circuito é mostrado na Fig. 1.13, a um conversor *boost* intercalado convencional. Fig. 1.14 mostra a topologia do
conversor proposto em [17] com a célula magneticamente acoplada em destaque, sabendo-se que estão magneticamente acoplados L_1 com L_{B1} e L_2 com L_{B2} .

Fig. 1.13 – Célula magneticamente acoplada.

Fig. 1.14 – Conversor boost proposto em [17].

Observa-se que o número de dispositivos semicondutores é o mesmo do conversor boost intercalado convencional, ainda que sejam adicionados dois indutores acoplados, L_1 e L_2 , dois diodos, D_1 e D_2 , e dois capacitores, C_{F1} e C_{F2} .

Apresenta como principais vantagens:

- Alto ganho de tensão;
- Esforço de tensão sobre as chaves menor que a metade da tensão de saída, considerando-se relação de transformação unitária dos indutores acoplados;
- Corrente de entrada não pulsante no modo de condução contínua;
- Alta eficiência;
- Alta capacidade de potência.

Apresenta como desvantagem importante:

• Modo de comutação não suave, causando perdas de potência.

Para reduzir as perdas de potência nas chaves deve-se empregar célula de comutação suave, como, por exemplo, proposto em [18] e [19].

Em [20] é apresentado um conversor *boost* intercalado com alto ganho de tensão e comutação suave. Este conversor é constituído de uma célula de comutação suave não dissipativa auxiliar, *snubber* não dissipativo proposto em [18], associada ao conversor proposto em [17] com a finalidade de garantir menores perdas de comutação.

Esta célula de comutação suave é composta por dois capacitores ressonantes, $C_{r1} \in C_{r2}$, um indutor ressonante, L_r , uma chave auxiliar, S_2 e dois diodos, D_2 em série com a chave principal $S_1 \in D_3$ em série com a chave auxiliar S_2 . As chaves, principal e auxiliar, possuem comutação suave. A Fig. 1.15 mostra o conversor proposto em [18].

Fig. 1.15 – Conversor boost proposto em [18].

A Fig. 1.16 mostra o conversor proposto em [20].

Fig. 1.16 – Conversor boost proposto em [20].

Dentre as vantagens deste conversor, podem ser destacadas:

- Esforço reduzido de tensão sobre as chaves;
- Corrente de entrada com baixa ondulação;

- Baixas perdas de comutação das chaves;
- Alta eficiência.

Desvantagem importante:

 Estrutura e controle mais complexos, devido ao emprego da célula de comutação suave auxiliar em cada chave.

1.8 CONVERSOR BOOST QUADRÁTICO

Em [19] é apresentado um conversor *boost* quadrático - equivalente a dois conversores *boost* em cascata com apenas uma chave - quase ressonante para obter comutação suave.

A rede ressonante é formada por um indutor ressonante, L_r , um capacitor ressonante, C_r e uma chave auxiliar, S_2 . A Fig. 1.17 mostra o conversor proposto em [19].

Fig. 1.17 – Conversor boost quadrático proposto em [19].

Dentre as vantagens deste conversor, podem ser destacadas:

- Possibilidade de ganho de tensão maior que o ganho do conversor *boost* convencional;
- Alta eficiência;
- Comutação suave por meio de uma única rede ressonante.

E como desvantagem:

• Esforços elevados de tensão e corrente sobre a chave principal.

1.9 GERAÇÃO DO CONVERSOR *BOOST* COM CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS

1.9.1 DEFINIÇÃO DA CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS

Define-se o conversor CC-CC como um sistema de processamento de energia constituído de:

- Fonte de tensão de entrada V_e ;
- Célula de comutação do conversor;
- Fonte de tensão de saída V_s .

A célula de comutação de um conversor é definida como o circuito remanescente quando a fonte de tensão de entrada e a carga são removidas. A estrutura básica do conversor *CC-CC PWM* não isolado, aplicando a definição de célula de comutação genérica apresentada em [1] e [36] é mostrada na Fig. 1.18.

Fig. 1.18 - Estrutura básica do conversor CC-CC PWM não isolado.

1.9.2 Obtenção das Células de Comutação a partir dos Conversores *CC-CC* Isolados

A partir dos conversores clássicos isolados, como os conversores *push-pull* alimentado em tensão, *push-pull* alimentado em corrente, *Weinberg*, *Weinberg* modificado e *flyback-push-pull* alimentado em corrente, são obtidas cinco células de comutação classificadas como *A*, *B*, *C*, *D* e E, apresentadas em [1] e [36]. Com a célula de comutação B são obtidas as três topologias básicas dos conversores *CC-CC* não isolados. A seguir apresenta-se o procedimento para a obtenção da célula de comutação *B*.

1°) Apresenta-se o circuito do conversor isolado *push-pull* clássico alimentado em corrente;

2°) O lado secundário do conversor é referido ao lado primário;

3°) Conecta-se o terminal negativo da fonte de saída, que estava conectado à derivação central do transformador, ao terminal negativo da fonte de entrada para operar como conversor *boost*;

4°) Retirando-se as fontes obtém-se a célula de comutação *B*.

A Fig. 1.19 mostra os circuitos gerados em cada passo do procedimento.

Fig. 1.19 – Obtenção da célula B.

A célula de comutação obtida é formada por duas células de comutação simples interligadas por um autotransformador. Seu funcionamento é baseado na operação complementar das duas chaves conectadas em um ponto comum. A Fig. 1.20 mostra seu funcionamento. Pode-se observar que ela é uma célula com três estados. Nos vértices do triângulo, estão localizados os estados de funcionamento da célula (1° , 2° e 3° estados, respectivamente).

Fig. 1.20 – Estados de funcionamento da célula de comutação de três estados.

O modo de operação utilizado no controle do conversor proposto está situado entre 1° e 2° estados. O ciclo de funcionamento entre os estados é do 1° para o 2° e do 2° para o 1° . Há sobreposição dos comandos das chaves S_1 e S_2 (*overlapping mode*) quando a razão cíclica é maior que 0,5. A Fig. 1.21 mostra o diagrama de tempo do comando das chaves.

Fig. 1.21 – Comandos das chaves $S_1 e S_2$.

1.9.3 CONVERSOR *BOOST* OBTIDO A PARTIR DA CÉLULA DE COMUTAÇÃO *B*:

Para se obter o conversor *boost* a partir da célula *B*, substitui-se a célula de comutação genérica presente na Fig. 1.18 pela célula de comutação *B*.

A Fig. 1.22 mostra o conversor *boost* obtido, após a substituição, no qual a célula de comutação B está definida entre os terminais a, b e c.

Fig. 1.22 – Conversor boost obtido a partir da célula de comutação B.

1.10 CONVERSORES *BOOST* OBTIDOS A PARTIR DA CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS

Em [21] é proposto um conversor *boost* de alto ganho de tensão baseado na célula de comutação de três estados que utiliza um multiplicador de tensão para obter o aumento de tensão desejado.

Este conversor apresenta como vantagens importantes:

- Esforço reduzido de tensão sobre as chaves;
- Corrente de entrada com baixa ondulação;
- Indutor opera com o dobro da frequência de comutação, permitindo redução de seu volume;
- Perdas reduzidas de comutação das chaves;
- Alta eficiência.

E como desvantagens podem:

- Os capacitores em série limitam o processamento de alta potência devido a sua vida útil;
- Grande número de componentes passivos (diodos e capacitores).

A Fig. 1.23 mostra a topologia do conversor proposto em [21].

Fig. 1.23 – Conversor boost proposto em [21].

Em [23] é proposto um conversor *boost* usando célula de comutação de três estados com um enrolamento secundário. A topologia deste conversor é mostrada na Fig. 1.24.

Fig. 1.24 – Conversor boost proposto em [23].

Apresenta como vantagens:

- Corrente de entrada com baixa ondulação;
- Indutor de entrada trabalha com o dobro da frequência de chaveamento, permitindo redução de peso e volume;

- Esforço de tensão sobre as chaves menor que a metade da tensão de saída, naturalmente grampeada pelo capacitor de saída, permitindo que sejam utilizadas chaves com baixa resistência estática entre dreno e fonte em estado de condução, *R_{DS(on)}*, melhorando sua eficiência;
- Para uma determinada razão cíclica, a tensão de saída pode ser elevada pelo incremento da relação de transformação, mantendo-se o esforço de tensão sobre as chaves;
- Parte da potência é transferida diretamente para carga sem circular pelas chaves controladas, diminuindo as perdas por condução e elevando o rendimento do conversor;

Como desvantagens, podem ser citadas:

• O conversor não funciona apropriadamente para razões cíclicas menores que 0,5, devido a dificuldade de indução magnética no enrolamento secundário.

1.11 CONVERSOR *CC-CC BOOST* BASEADO NA CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS PARA ALIMENTAÇÃO DE INVERSORES COM DIVISOR CAPACITIVO

O conversor proposto é mostrado na Fig. 1.25, no qual está conectado nos pontos a, b e c um inversor meia ponte monofásico como exemplo de aplicação.

Além das vantagens do conversor proposto em [23] apresenta:

Tensões dos diodos menores comparado com [23];

Ganho de tensão é incrementado pela relação de transformação e pelo número de enrolamentos secundários;

Obtenção de tensão balanceada de tensão na saída do conversor, adequada para alimentação de inversores com divisor capacitivo, tais como: inversores com célula *NPC*, meia-ponte e duplo meia-ponte [34].

Fig. 1.25 – Conversor CC-CC boost baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo.

Também o inversor duplo meia ponte proposto em [34] e os inversores com célula *NPC* podem utilizar o conversor *boost* proposto como estágio de entrada. As Figs. 1.26, 1.27, 1.28 e 1.29 mostram inversores duplo meia ponte monofásico, meia ponte trifásico e inversores com célula *NPC* monofásico e trifásico, respectivamente.

Fig. 1.26 – Inversor duplo meia ponte proposto em [34].

Fig. 1.27 – Inversor meia ponte trifásico.

Fig. 1.28 – Inversor com célula NPC monofásico.

Fig. 1.29 – Inversor com célula NPC trifásico.

1.12 CONSIDERAÇÕES FINAIS

Este capítulo apresentou diversas topologias de conversores propostas na literatura para serem empregadas em aplicações que exigem alto ganho de tensão, destacando-se suas vantagens e desvantagens mais relevantes.

Através da revisão bibliográfica realizada neste capítulo concluiu-se que o conversor proposto neste trabalho pode ser uma boa opção frente às soluções empregadas atualmente no mercado por apresentar diversas vantagens a serem confirmadas no estudo desenvolvido nos capítulos seguintes e topologia adequada para alimentação de inversores meia ponte, duplo meia ponte [34] e com células *NPC* monofásicos e trifásicos.

Este trabalho tem como objetivo o estudo e a implementação prática do conversor *CC*-*CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo.

CAPÍTULO II

ANÁLISE QUALITATIVA E QUANTITATIVA DO CONVERSOR CC-CC *BOOST* BASEADO NA CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS PARA ALIMENTAÇÃO DE INVERSORES COM DIVISOR CAPACITIVO

2.1 CONSIDERAÇÕES INICIAIS

Neste capítulo são realizadas as análises qualitativa e quantitativa do conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo operando no modo de condução contínua com razão cíclica maior de 0,5. São apresentados: topologia, etapas de operação, principais formas de onda, análise teórica e esforços de tensão e corrente nos componentes do conversor.

A partir destas análises é possível se determinar as equações necessárias para as especificações de todos componentes do circuito de potência deste conversor.

2.2 TOPOLOGIA

O conversor é composto pelos seguintes dispositivos: fonte de tensão de entrada V_{bat} , indutor L_1 armazenador, transformador Tr controlado pelas chaves S_1 e S_2 , diodos retificadores D_1 , D_2 , D_3 , D_4 , D_5 e D_6 , capacitores grampeadores auxiliares C_1 , C_2 , C_3 , C_4 e C_5 , capacitores de filtro de saída $C_{o1} e C_{o2}$.

A Fig. 2.1 apresenta a topologia do conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo proposto.

Fig. 2.1 – Conversor CC-CC boost baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo proposto.

2.3 ETAPAS DE OPERAÇÃO E PRINCIPAIS FORMAS DE ONDA

O conversor *boost* proposto apresenta modos de operação determinados pela corrente que circula através do indutor de armazenamento de energia L_I . Desta forma o conversor pode funcionar no modo de condução contínua, descontínua e crítica. Neste trabalho serão apresentadas as etapas de funcionamento do conversor no modo de condução contínua operando com razão cíclica maior que 0,5, havendo, portanto, sobreposição dos sinais de comando das chaves durante alguns instantes no período de comutação (*overlapping mode*). Para este propósito, os semicondutores e os elementos magnéticos são considerados ideais.

2.3.1 DESCRIÇÃO DAS ETAPAS DE OPERAÇÃO

Quatro são as etapas de operação num período de comutação, descritas a seguir.

Primeira etapa (t_0, t_1) :

No instante $t = t_0$, A chave S_2 é comandada a conduzir e a chave S_1 permanece em condução.

A Fig. 2.2 mostra o diagrama de tempo do comando das chaves.

Fig. 2.2 – Comandos das chaves $S_1 e S_2$.

Os diodos D_1 , D_4 e D_6 são reversamente polarizados, enquanto os diodos D_2 , D_3 e D_5 permanecem reversamente polarizados. A corrente que circula através do indutor L_1 (I_{L1}) aumenta linearmente e o indutor L_1 armazena energia. Uma parte desta corrente flui através do enrolamento L_{p1} e a chave S_1 e outra parte, de mesmo valor, flui através do enrolamento L_{p2} e a chave S_2 , já que L_{p1} e L_{p2} têm o mesmo número de espiras. Nesta etapa não há transferência de energia da entrada para carga, portanto o fornecimento de energia para carga é realizado pelos capacitores auxiliares C_1 , C_2 , C_3 , C_4 e C_5 e pelos capacitores de filtro de saída C_{o1} e C_{o2} . O intervalo é finalizado quando a chave S_1 é bloqueada. A equação diferencial da corrente através do indutor L_1 (I_{L1}), durante este intervalo é determinada por (2.1). O circuito desta etapa é mostrado na Fig. 2.3.

$$L_1 \cdot \frac{dI_{L1}}{dt} - V_{bat} = 0.$$
 (2.1)

O intervalo de tempo em função da razão cíclica D é determinado em (2.2).

$$t_1 - t_0 = \frac{T}{2} \cdot (2 \cdot D - 1). \tag{2.2}$$

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Fig. 2.3 - Primeira etapa de operação.

Segunda etapa (t₁, t₂):

No instante t = t₁ a chave S_1 é bloqueada e S_2 permanece conduzindo. A tensão sobre o indutor é invertida mantendo o fluxo magnético contínuo, as tensões sobre a chave S_1 e o capacitor de filtro C_1 são iguais. Os diodos D_2 , D_3 e D_5 são diretamente polarizados e os diodos D_1 , D_4 e D_6 permanecem polarizados reversamente. A corrente através do indutor L_1 (I_{L1}) flui através dos enrolamentos primários L_{p1} e L_{p2} e decresce linearmente. A energia armazenada no indutor L_1 na primeira etapa, assim como, a energia da fonte de alimentação são transferidas para os capacitores auxiliares C_1 , C_2 e C_4 e para os capacitores de filtro de saída C_{o1} e C_{o2} . O circuito resultante desta etapa é representado na Fig. 2.4. A equação diferencial que representa esta etapa é determinada por (2.3).

$$-L_1 \frac{di_{L1}}{dt} + \frac{V_{bat}}{2(1-D)} - V_{bat} = 0.$$
(2.3)

O intervalo de tempo, em função da razão cíclica D, é determinado em (2.4).

$$t_2 - t_1 = T \cdot (1 - D). \tag{2.4}$$

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Fig. 2.4 - Segunda etapa de operação.

Terceira etapa (t₂, t₃):

No instante t = t₂, a chave S_1 é comandada a conduzir, enquanto que a chave S_2 permanece conduzindo. Os diodos D_2 , D_3 e D_5 são reversamente polarizados, enquanto os diodos D_1 , D_4 e D_6 permanecem reversamente polarizados. Da mesma forma que na primeira etapa de operação, a energia é armazenada no indutor L_1 , não sendo transferida para carga, portanto o fornecimento de energia para carga é realizado pelos capacitores auxiliares C_1 , C_2 , C_3 , C_4 e C_5 e os capacitores de filtro de saída C_{o1} e C_{o2} . O intervalo é finalizado quando a chave S_2 é bloqueada. A equação diferencial da corrente através do indutor L_1 (I_{L1}) é determinada pela mesma equação da primeira etapa. O circuito desta etapa é mostrado na Fig. 2.5.

Fig. 2.5 - Terceira etapa de operação.

Quarta etapa (t₃, t₄):

No instante t = t₃, a chave S_2 é bloqueada e S_1 permanece conduzindo. A tensão sobre o indutor é invertida mantendo o fluxo magnético contínuo, as tensões sobre a chave S_2 e o capacitor de filtro C_1 são iguais. Os diodos D_1 , D_4 e D_6 são diretamente polarizados e os diodos D_2 , D_3 e D_5 permanecem reversamente polarizados. Da mesma forma que ocorre na segunda etapa de operação, a energia armazenada no indutor L_1 na terceira etapa e a energia da fonte de alimentação são transferidas para os capacitores auxiliares C_1 , C_3 e C_5 e para os capacitores de filtro de saída C_{o1} e C_{o2} . A equação diferencial da corrente através do indutor L_1 (I_{L1}) é determinada pela mesma equação da segunda etapa. O circuito resultante desta etapa é representado na Fig. 2.6.

Fig. 2.6 - Quarta etapa de operação.

2.3.2 PRINCIPAIS FORMAS DE ONDA

A Fig. 2.7 apresenta as principais formas de onda de tensão e corrente que ocorrem durante um período de comutação nos principais componentes: chaves S_1 e S_2 , indutor L_1 , Transformador *Tr* e diodos D_1 , D_2 , D_3 , D_4 , D_5 e D_6 .

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

2.4 ANÁLISE TEÓRICA

2.4.1 CARACTERÍSTICA DE SAÍDA

Observa-se que durante um período de comutação a tensão média sobre o indutor é nula. Esta condição é representada por (2.5).

$$V_{L1(med)} = 2 \cdot \frac{1}{T} \cdot \left[\int_{t_0}^{t_1} V_{bat} \cdot dt + \int_{t_1}^{t_2} \left(V_{bat} - V_{Lp} \right) dt \right] = 0.$$
(2.5)

Onde V_{Lp} é a tensão máxima sobre cada um dos enrolamentos primários L_{p1} e L_{p2} , sabendo-se que elas são iguais.

Substituindo-se (2.2) e (2.4) em (2.5), obtém-se (2.6).

$$V_{bat} \cdot \left[\frac{T}{2} \cdot (2 \cdot D - 1)\right] = V_{Lp} \cdot [T \cdot (1 - D)] - V_{bat} \cdot [T \cdot (1 - D)].$$

$$(2.6)$$

Então, a tensão máxima sobre o enrolamento primário V_{Lp} é determinada por (2.7).

$$V_{Lp(max)} = V_{Lp1(max)} = V_{Lp2(max)} = \frac{V_{bal}}{2 \cdot (1 - D)}.$$
(2.7)

A tensão sobre o capacitor C_1 é determinada por (2.8) e as tensões dos demais capacitores do conversor genericamente por (2.9).

$$V_{C1(max)} = 2 \cdot V_{Lp(max)} = \frac{V_{bat}}{(1-D)}.$$
(2.8)

$$V_{C_{2,j}(max)} = V_{C_{2,j+1}(max)} = \frac{a_j \cdot V_{C1(max)}}{2}.$$
 (2.9)

Sendo a_i determinado por (2.10).

$$a_j = \frac{N_{S_j}}{N_P}.$$
(2.10)

Onde:

j é número do enrolamento secundário;

 a_j é a relação de transformação entre o número de espiras do enrolamento secundário j (N_{Sj}) e o número de espiras de um dos enrolamentos primários (N_p) .

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

A tensão de saída V_{bar} é igual à soma das tensões dos capacitores, Admitindo-se $a_1 = a_2 = a$, seu valor é obtido por (2.11).

$$V_{bar} = \frac{V_{bat}}{1 - D} \cdot (1 + 2 \cdot a).$$
(2.11)

A tensão de saída V_{bar} de um conversor com *n* enrolamentos secundários com suas respectivas relações de transformação a_i é determinada por (2.12).

$$V_{bar} = \frac{V_{bat}}{1 - D} \cdot \left(1 + \sum_{j=1}^{n} a_j\right).$$
 (2.12)

A partir de (2.12), obtém-se o ganho estático do conversor por (2.13).

$$G_{V} = \frac{V_{bar}}{V_{bat}} = \frac{1}{1 - D} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right).$$
(2.13)

Com base em (2.13), verifica-se que é possível aumentar o ganho de tensão, aumentando-se o valor da relação de transformação, o número de enrolamentos secundários ou ambos. A Fig. 2.8 apresenta as curvas teóricas e simuladas que descrevem os ganhos estáticos em função da razão cíclica D e das diversas relações de transformação para conversores com dois enrolamentos secundários.

Fig. 2.8 - Ganho estático em função da razão cíclica do conversor proposto.

2.4.2 ANÁLISE QUANTITATIVA DO ESTÁGIO DE POTÊNCIA

A seguir será apresentada a análise quantitativa do conversor proposto para razão cíclica maior de 0,5, expressões matemáticas dos esforços no modo de condução contínua de corrente, com o intuito de apresentar o princípio de funcionamento e a metodologia de projeto do conversor.

2.4.2.1 DETERMINAÇÃO DA ONDULAÇÃO DA CORRENTE E DA INDUTÂNCIA DO INDUTOR L_1

A ondulação da corrente no modo de condução contínua é determinada por (2.14), obtida a partir da análise das formas de onda apresentadas na Fig. 2.6, (2.1) e (2.13).

$$\Delta I_{L1} = \frac{(2 \cdot D - 1) \cdot (1 - D) \cdot T}{2 \cdot L_1 \cdot \left(1 + \sum_{j=1}^n a_j\right)} \cdot V_{bar}$$
(2.14)

Rearranjando os termos em (2.14), obtém-se a ondulação da corrente parametrizada no indutor de acordo com (2.15).

$$\overline{\Delta I}_{L1} = \frac{2 \cdot L_1 \cdot \Delta I_{L1} \cdot \left(1 + \sum_{j=1}^n a_j\right)}{T \cdot V_{bar}} = (2 \cdot D - 1) \cdot (1 - D).$$
(2.15)

A Fig. 2.9 mostra a ondulação da corrente no modo de condução contínua parametrizada no indutor em função da razão cíclica definida em (2.15). Observa-se que o valor máximo da ondulação da corrente no indutor acontece quando a razão cíclica é 0,75.

Fig. 2.9 - Ondulação da corrente parametrizada no indutor L_1 *em função da razão cíclica D.*

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

A partir de (2.15), obtém-se a indutância do indutor L₁, a qual é definida por (2.16).

$$L_{1} = \frac{(2 \cdot D - 1) \cdot (1 - D) \cdot T \cdot V_{bar}}{2 \cdot \Delta I_{L1} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)} = \overline{\Delta I}_{L1} \cdot \frac{T \cdot V_{bar}}{2 \cdot \Delta I_{L1} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}$$
(2.16)

Substituindo-se o valor do parâmetro $\overline{\Delta I}_{L1}$ obtido no ponto de máxima ondulação da corrente em (2.16), obtém-se (2.17).

$$L_{1} = \frac{T \cdot V_{bar}}{16 \cdot \Delta I_{L1} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}.$$
 (2.17)

A indutância crítica $L_{I(crit)}$ que garante o modo de condução contínua é determinada por (2.18).

$$L_{1(crit)} = \frac{(2 \cdot D - 1) \cdot (1 - D) \cdot T \cdot V_{bat}}{4 \cdot I_{bar} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}.$$
 (2.18)

2.4.2.2 DETERMINAÇÃO DA ONDULAÇÃO DA TENSÃO DE SAÍDA E DAS Capacitâncias dos Capacitores de Saída

A capacitância do capacitor C_1 diminui a ondulação causada pela corrente pulsada dos diodos D_1 e D_2 , podendo ser calculada pela carga cedida na primeira e terceira etapas. A quantidade de carga cedida pelo capacitor é determinada em (2.19), na qual I_{c1} é a corrente de descarga do capacitor C_1 que é a mesma corrente de saída I_{bar}

$$\Delta Q_{c1} = \int_{\frac{T}{2}}^{\frac{D}{D}} I_{c1} dt.$$
 (2.19)

A ondulação da tensão em um capacitor está relacionada à variação de sua carga, podendo ser definida por (2.20).

$$\Delta V_{c1} = \frac{\Delta Q_{c1}}{C_1}.$$
 (2.20)

A partir de (2.19) e (2.20), obtém-se (2.21).

$$\Delta V_{c1} = \frac{(2.D-1).\frac{T}{2}.I_{c1}}{C_1}.$$
(2.21)

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Em (2.22) calcula-se o valor da capacitância do capacitor C_1 para manter a ondulação ΔV_{c1} dentro de limites especificados.

$$C_{1} \ge \frac{(2.D-1).I_{c1}.T}{2.\Delta V_{c1}}.$$
(2.22)

Como a corrente de descarga I_{c1} pode ser considerada igual a corrente de saída do conversor, corrente do barramento *CC*, I_{bar} , então (2.22) pode ser reescrita como (2.23).

$$C_{1} \geq \frac{(2.D-1).(1-D).P_{bar}.T}{2.\Delta V_{c1}.V_{bat}.\left(1+\sum_{j=1}^{n}a_{j}\right)}.$$
(2.23)

Da mesma forma, os capacitores C_2 , C_3 , C_4 e C_5 podem ter suas capacitâncias calculadas pela carga cedida. Os capacitores C_2 e C_4 , genericamente C_{2j} , recebem carga na segunda etapa e cedem carga nas demais etapas, enquanto os capacitores C_3 e C_5 , genericamente C_{2j+1} , recebem carga na quarta etapa e cedem carga nas demais etapas. A quantidade de carga cedida pelos capacitores é determinada genericamente por (2.24), na qual I_{bar} é a corrente de saída do conversor, que é a mesma corrente de descarga durante a soma dos tempos das etapas em que o capacitor é descarregado.

$$\Delta Q_{C_{2,j}} = \Delta Q_{C_{2,j+1}} = \int_{T_{(1-D)}}^{T} I_{bar} dt.$$
(2.24)

A partir de (2.20) e (2.24), obtém-se (2.25).

$$\Delta V_{C_{2,j}} = \frac{D.T.I_{bar}}{C_{2j}},$$
(2.25)
$$\Delta V_{C_{2,j+1}} = \frac{D.T.I_{bar}}{C_{2,j+1}}.$$

O cálculo do valor das capacitâncias dos capacitores $C_{2,}$ $C_{3,}$ C_{4} e C_{5} para manter a ondulação ΔV_{c} dentro de limites especificados são determinado genericamente por (2.26).

$$C_{2j} \ge \frac{D.T.I_{bar}}{\Delta V_{C_{2j}}},$$

$$C_{2j+1} \ge \frac{D.T.I_{bar}}{\Delta V_{C_{2j+1}}}.$$
(2.26)

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

(2.26) pode ser reescrita como (2.27).

$$C_{2j} \ge \frac{D.(1-D).P_{bar}.T}{\Delta V_{C_{2j}}.V_{bat}.\left(1+\sum_{j=1}^{n}a_{j}\right)},$$

$$C_{2j+1} \ge \frac{D.(1-D).P_{bar}.T}{\Delta V_{C_{2j+1}}.V_{bat}.\left(1+\sum_{j=1}^{n}a_{j}\right)}.$$
(2.27)

2.4.2.3 CÁLCULO DOS ESFORÇOS

Neste item serão calculados os esforços de corrente e de tensão dos seguintes componentes do conversor: indutor, transformador, capacitores, diodos e chaves.

Esforços no indutor L₁

A corrente eficaz I_{Llef} que circula através do indutor é definida por (2.28).

$$I_{Llef} = \sqrt{\frac{1}{T} \cdot \int_0^T I_{L1}^2(t) \cdot dt}.$$
 (2.28)

A corrente instantânea $I_{L1}(t)$ do indutor é definida por (2.29), obtida através de (2.1) e (2.3).

$$I_{L1}(t) = \begin{cases} I_{L1(min)} + \frac{V_{bat} \cdot t}{L_1} & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3 \text{ ,} \\ I_{L1(max)} - \frac{V_{bat} \cdot (2D - 1) \cdot t}{2 \cdot L_1 \cdot (1 - D)} & t_1 \le t \le t_2 \text{ e } t_3 \le t \le T. \end{cases}$$

$$(2.29)$$

Substituindo-se (2.29) em (2.28), obtém-se (2.30).

$$I_{L1ef} = \sqrt{\frac{2}{T}} \left[\int_{0}^{(2.D-1)\frac{T}{2}} \left(I_{L1(min)} + \frac{V_{bat} \cdot t}{L_{1}} \right)^{2} \cdot dt + \int_{0}^{(1-D)T} \left(I_{L1(max)} - \frac{V_{bat} \cdot (2D-1) \cdot t}{2 \cdot L_{1} \cdot (1-D)} \right)^{2} \cdot dt \right].$$
(2.30)

A corrente máxima $I_{L1(max)}$ e a corrente mínima $I_{L1(min)}$ através do indutor são definidas por (2.31) e (2.32), respectivamente.

$$I_{L1(max)} = I_{L1(med)} + \frac{\Delta I_{L1}}{2},$$
(2.31)

$$I_{L1(min)} = I_{L1(med)} - \frac{\Delta I_{L1}}{2}.$$
 (2.32)

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

A corrente média $I_{L1(med)}$ através do indutor pode ser expressa em função da potência e da tensão de entrada V_{bat} , já que a corrente através do indutor de entrada é a mesma corrente da fonte de entrada. Sendo definida, portanto, por (2.33).

$$I_{L1(med)} = \frac{I_{bar} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}{1 - D}.$$
(2.33)

Substituindo-se (2.14) e (2.33) em (2.31) e (2.32), obtêm-se (2.34) e (2.35) que determinam as corrente máxima e mínima através do indutor L_1 , respectivamente.

$$I_{L1(max)} = \frac{I_{bar} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}{1 - D} + \frac{(2 \cdot D - 1) \cdot (1 - D) \cdot T \cdot V_{bar}}{4 \cdot L_{1} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}.$$
(2.34)

$$I_{L1(min)} = \frac{I_{bar} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}{1 - D} - \frac{(2 \cdot D - 1) \cdot (1 - D) \cdot T \cdot V_{bar}}{4 \cdot L_{1} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}.$$
(2.35)

Substituindo-se (2.34) e (2.35) em (2.30), obtém-se (2.36) que determina a corrente eficaz através do indutor L_1 , I_{L1ef} .

$$I_{Llef} = \sqrt{\frac{2}{T} \cdot \left[\int_{0}^{(2.D-1)\frac{T}{2}} (A1)^{2} . dt + \int_{0}^{(1-D)T} (A2)^{2} . dt \right]}.$$
 (2.36)

Onde:

$$A1 = \frac{I_{bar} \cdot (1 + \sum_{j=1}^{n} a_j)}{1 - D} - \frac{(2 \cdot D - 1) \cdot (1 - D) \cdot T \cdot V_{bar}}{4 \cdot L_1 \cdot (1 + \sum_{j=1}^{n} a_j)} + \frac{V_{bat} \cdot t}{L_1},$$

$$A2 = \frac{I_{bar} \cdot (1 + \sum_{j=1}^{n} a_j)}{1 - D} + \frac{(2 \cdot D - 1) \cdot (1 - D) \cdot T \cdot V_{bar}}{4 \cdot L_1 \cdot (1 + \sum_{j=1}^{n} a_j)} - \frac{V_{bat} \cdot (2D - 1) \cdot t}{2 \cdot L_1 \cdot (1 - D)}.$$

Desenvolvendo-se (2.36), obtém-se (2.37).

$$I_{L1ef} = \sqrt{\left[\frac{I_{bar} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}{1 - D}\right]^{2} + \left[\frac{(2.D - 1) \cdot V_{bat} \cdot T}{\sqrt{48} \cdot L_{1}}\right]^{2}}.$$
(2.37)

Esforços no transformador Tr

A máxima tensão sobre os enrolamentos primários L_{p1} e L_{p2} do transformador Tr são iguais e definidas em (2.38), a máxima tensão sobre os enrolamentos secundários são definidas em (2.39). Onde *j* representa o número do enrolamento secundário do qual se deseja saber a tensão e a_j relação de transformação correspondente.

$$V_{Lp(max)} = \frac{V_{bar}}{2 \cdot \left(1 + \sum_{j=1}^{n} a_j\right)},$$
(2.38)

$$V_{Lsj(max)} = \frac{a_j . V_{bar}}{2 . \left(1 + \sum_{j=1}^n a_j\right)}.$$
 (2.39)

As tensões eficazes nos enrolamentos primários e secundários do transformador Tr são determinadas por (2.40) e (2.41), respectivamente.

$$V_{Lpef} = \sqrt{\frac{2}{T} \int_{0}^{T,(1-D)} \left[\frac{V_{bar}}{2 \cdot \left(1 + \sum_{j=1}^{n} a_{j} \right)} \right]^{2} . dt, \qquad (2.40)$$

$$V_{Lsjef} = \sqrt{\frac{2}{T} \int_{0}^{T,(1-D)} \left[\frac{a_{j} . V_{bar}}{2 \cdot \left(1 + \sum_{j=1}^{n} a_{j} \right)} \right]^{2} . dt. \qquad (2.41)$$

Resolvendo-se (2.40) e (2.41), obtêm-se (2.42) e (2.43).

$$V_{Lpef} = \frac{V_{bar}}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} \cdot \sqrt{\frac{1 - D}{2}},$$
(2.42)

$$V_{Lsjef} = \frac{a_j . V_{bar}}{\left(1 + \sum_{j=1}^n a_j\right)} . \sqrt{\frac{1 - D}{2}}.$$
 (2.43)

A corrente eficaz que circula através de cada enrolamento do primário do transformador *Tr* é definida por (2.44).

$$I_{Lpef} = I_{Lp1ef} = I_{Lp2ef} = \sqrt{\frac{1}{T}} \cdot \int_0^T I_{Lp1}^2(t) \cdot dt.$$
(2.44)

A corrente instantânea que circula através de cada enrolamento do primário do transformador *Tr*, $I_{Lp2}(t)$ é definida por (2.45) e a corrente instantânea através do enrolamento primário, $I_{Lp1}(t)$ é definida por (2.46).

$$I_{Lp2}(t) = \begin{cases} \frac{I_{L1}}{2}(t) & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3, \\ I_{L1}(t) - I_{Lp1}(t) & t_1 \le t \le t_2 \text{ e } t_3 \le t \le T. \end{cases}$$
(2.45)

$$I_{Lp1}(t) = \begin{cases} \frac{I_{L1}}{2}(t) & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3, \\ \frac{I_{L1}(t)}{2 \cdot \left(1 + \sum_{j=1}^n a_j\right)} & t_1 \le t \le t_2, \\ I_{L1}(t) \cdot \left[1 - \frac{1}{2 \cdot \left(1 + \sum_{j=1}^n a_j\right)}\right] & t_3 \le t \le T. \end{cases}$$

$$(2.46)$$

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Substituindo-se (2.46) em (2.45), obtém-se (2.47).

$$I_{Lp2}(t) = \begin{cases} \frac{I_{L1}}{2}(t) & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3, \\ I_{L1}(t) \cdot \left[1 - \frac{1}{2 \cdot \left(1 + \sum_{j=1}^n a_j \right)} \right] & t_1 \le t \le t_2, \\ \frac{I_{L1}(t)}{2 \cdot \left(1 + \sum_{j=1}^n a_j \right)} & t_3 \le t \le T. \end{cases}$$

$$(2.47)$$

Substituindo (2.47) em (2.44), obtém-se (2.48), que determina a corrente eficaz que circula através de cada enrolamento primário do transformador I_{Lpef} .

$$I_{Lpef} = \sqrt{\frac{2}{T} \cdot \int_{0}^{(2.D-1)\frac{T}{2}} (A1)^{2} dt + \frac{1}{T} \cdot \int_{0}^{(1-D)T} \{A2\}^{2} dt + \frac{1}{T} \cdot \int_{0}^{(1-D)T} [A3]^{2} dt.$$
(2.48)

Onde:

$$A1 = \frac{I_{L1}(t)}{2},$$

$$A2 = I_{L1}(t) \cdot \left[1 - \frac{1}{2 \cdot \left(1 + \sum_{j=1}^{n} a_j \right)} \right],$$

$$A3 = \frac{I_{L1}(t)}{2 \cdot \left(1 + \sum_{j=1}^{n} a_j \right)}.$$

Solucionando-se (2.48), obtém-se (2.49), em função dos parâmetros do conversor.

$$I_{Lpef} = \sqrt{\left[\frac{I_{bar}^{2}}{4.(1-D)^{2}} + \frac{(2.D-1)^{2}.V_{bat}^{2}.T^{2}}{192.L_{1}^{2}.(1+\sum_{j=1}^{n}a_{j})^{2}}\right]} \left[1 + 2.\left(\sum_{j=1}^{n}a_{j}\right) + (3-2.D).\left(\sum_{j=1}^{n}a_{j}\right)^{2}\right].$$
 (2.49)

A corrente máxima $I_{Lp(max)}$ que circula através de cada enrolamento do primário do transformador *Tr* é definida por (2.50).

$$I_{Lp(max)} = \left[\frac{I_{bar}}{2.(1-D)} + \frac{V_{bat}.T.(2.D-1)}{8.L_{1}.\left(1+\sum_{j=1}^{n}a_{j}\right)}\right] \cdot \left[2.\left(1+\sum_{j=1}^{n}a_{j}\right) - 1\right].$$
(2.50)

A corrente eficaz I_{Lsef} que circula através de cada enrolamento do secundário do transformador Tr é definida por (2.51).

$$I_{Lsjef} = \sqrt{\frac{1}{T}} \int_{0}^{T} I_{Lsj}^{2}(t) dt.$$
 (2.51)

A corrente instantânea $I_{Lsj}(t)$ que circula através de cada enrolamento do secundário do transformador Tr é definida por (2.52).

$$I_{Lsj}(t) = \begin{cases} 0 & t_0 \le t \le t_1 \ e \ t_2 \le t \le t_3, \\ \frac{I_{L1}}{\left(1 + \sum_{j=1}^n a_j\right)}(t) & t_1 \le t \le t_2, \\ -\frac{I_{L1}}{\left(1 + \sum_{j=1}^n a_j\right)}(t) & t_3 \le t \le T. \end{cases}$$
(2.52)

Substituindo-se (2.52) em (2.51), obtém-se (2.53), que determina a corrente eficaz I_{Lsjef} , através de cada enrolamento secundário do transformador Tr.

$$I_{Lsjef} = \sqrt{\frac{1}{T} \cdot \int_{0}^{(1-D)T} \left[\frac{I_{L1}(t)}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} \right]^{2} dt + \frac{1}{T} \cdot \int_{0}^{(1-D)T} \left[\frac{-I_{L1}(t)}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} \right]^{2} dt.$$
(2.53)

A partir de (2.53), obtém-se a equação (2.54).

$$I_{Lsjef} = \sqrt{\frac{2}{T} \cdot \int_{0}^{(1-D)T} \left[\frac{I_{L1}(t)}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} \right]^{2}} dt.$$
(2.54)

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Solucionando-se (2.54), obtém-se (2.55), em função dos parâmetros do conversor.

$$I_{Lsjef} = \sqrt{\left[\frac{2.I_{bar}^{2}}{(1-D)} + \frac{(1-D).(2.D-1)^{2}.V_{bat}^{2}.T^{2}}{24.L_{1}^{2}.\left(1+\sum_{j=1}^{n}a_{j}\right)^{2}}\right]}.$$
(2.55)

A corrente máxima $I_{Lsj(max)}$ que circula através de cada enrolamento do secundário do transformador *Tr* é definida por (2.56).

$$I_{Lsj(max)} = \frac{I_{bar}}{(1-D)} + \frac{V_{bat} \cdot T \cdot (2.D-1)}{4.L_1 \cdot \left(1 + \sum_{j=1}^n a_j\right)}.$$
(2.56)

Esforços nas chaves S₁ e S₂

A tensão máxima sobre as chaves S_1 e S_2 é grampeada pelo capacitor C_1 , sendo seu valor máximo determinado por (2.57).

$$V_{S1(max)} = \frac{V_{bar}}{\left(1 + \sum_{j=1}^{n} a_j\right)}.$$
 (2.57)

A corrente instantânea $I_{SI}(t)$ que circula através de cada uma das chaves S_1 e S_2 é definida por (2.58).

$$I_{S1}(t) = \begin{cases} \frac{I_{L1}}{2}(t) & t_0 \le t \le t_1 \ e \ t_2 \le t \le t_3, \\ I_{L1}(t) \cdot \left[1 - \frac{1}{2 \cdot \left(1 + \sum_{j=1}^n a_j \right)} \right] & t_1 \le t \le t_2, \\ 0 & t_3 \le t \le T. \end{cases}$$
(2.58)

A corrente média $I_{S1(med)}$ em cada uma das chaves S_1 e S_2 é definida por (2.59).

$$I_{S1(med)} = \frac{2}{T} \int_{0}^{(2.D-1)^{\frac{T}{2}}} \frac{I_{L1}(t)}{2} dt + \frac{1}{T} \int_{0}^{(1-D)T} I_{L1}(t) \left[1 - \frac{1}{2 \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)} \right] dt.$$
(2.59)

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Solucionando-se (2.59), obtém-se (2.60) em função dos parâmetros do conversor.

$$I_{S1(med)} = \frac{I_{bar}}{2} \cdot \frac{\left(D + \sum_{j=1}^{n} a_{j}\right)}{(1-D)}.$$
(2.60)

A corrente eficaz I_{Slef} que circula através de cada uma das chaves S_1 e S_2 é determinada por (2.61).

$$I_{Slef} = \sqrt{\frac{1}{T} \cdot \int_0^T I_{Sl}^2(t) \cdot dt}.$$
 (2.61)

Substituindo-se (2.58) em (2.61), obtém-se (2.62) que determina a corrente eficaz I_{Slef} através de cada chave.

$$I_{S1ef} = \sqrt{\frac{2}{T} \cdot \int_{0}^{(2.D-1)\frac{T}{2}} \left(\frac{I_{L1}(t)}{2}\right)^{2} dt + \frac{1}{T} \cdot \int_{0}^{(1-D)T} \left\{ I_{L1}(t) \cdot \left[1 - \frac{1}{2 \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}\right] \right\}^{2} dt.$$
(2.62)

Solucionando-se (2.62), obtém-se (2.63) em função dos parâmetros do conversor.

$$I_{Slef} = \sqrt{\left[\frac{I_{bar}^{2}}{4.(1-D)^{2}} + \frac{(2.D-1)^{2}.V_{bat}^{2}.T^{2}}{192.L_{1}^{2}.\left(1+\sum_{j=1}^{n}a_{j}\right)^{2}}\right]} \cdot \left[D + 2.\left(\sum_{j=1}^{n}a_{j}\right) + (3-2.D).\left(\sum_{j=1}^{n}a_{j}\right)^{2}\right]}.$$
 (2.63)

A corrente máxima $I_{SI(max)}$ que circula através de cada chave S_1 e S_2 tem o mesmo valor da corrente máxima do primário do transformador e é definida por (2.64).

$$I_{S1(max)} = \left[\frac{I_{bar}}{2.(1-D)} + \frac{(2.D-1).V_{bat}.T}{8.L_1.\left(1+\sum_{j=1}^n a_j\right)}\right] \cdot \left[2.\left(1+\sum_{j=1}^n a_j\right) - 1\right].$$
(2.64)

Esforços nos diodos D₁, D₂, D_{2i+1} e D_{2i+2}

Observa-se que as tensões reversas máximas sobre cada diodo de um conversor genérico são iguais as tensões dos capacitores, conforme apresentadas na Tabela 2.1. Estas tensões são determinadas por (2.8) e (2.9).

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Diodos	D_1	D_2	D _{2j+1}	D _{2j+2}
1ªEtapa	$\frac{V_{bat}}{(1-D)}$	$\frac{V_{bat}}{(1-D)}$	$\frac{a_j V_{bat}}{2.(1-D)}$	$\frac{a_j V_{bat}}{2.(1-D)}$
2ª Etapa	$\frac{V_{bat}}{(1-D)}$	0	0	$\frac{a_j V_{bat}}{(1-D)}$
3ª Etapa	$\frac{V_{bat}}{(1-D)}$	$\frac{V_{bat}}{(1-D)}$	$\frac{a_j V_{bat}}{2.(1-D)}$	$\frac{a_j.V_{bat}}{2.(1-D)}$
4ª Etapa	0	$\frac{V_{bat}}{(1-D)}$	$\frac{a_j V_{bat}}{(1-D)}$	0

TABELA 2.1 – ESFORÇOS DE TENSÃO NOS DIODOS DO CONVERSOR GENÉRICO.

A Tabela 2.2 apresenta as tensões reversas máximas sobre cada diodo do conversor proposto.

TABELA 2.2 – ESFORÇOS DE TENSÃO NOS DIODOS DO CONVERSOR.

Diodos	D_1	D_2	D_3	D_4	D_5	D_6
1ª Etapa	$\frac{V_{bat}}{(1-D)}$	$\frac{V_{bat}}{(1-D)}$	$\frac{a_1 V_{bat}}{2.(1-D)}$	$\frac{a_1 V_{bat}}{2.(1-D)}$	$\frac{a_2.V_{bat}}{2.(1-D)}$	$\frac{a_2.V_{bat}}{2.(1-D)}$
2ª Etapa	$\frac{V_{bat}}{(1-D)}$	0	0	$\frac{a_1 V_{bat}}{(1-D)}$	0	$\frac{a_2 V_{bat}}{(1-D)}$
3ª Etapa	$\frac{V_{bat}}{(1-D)}$	$\frac{V_{bat}}{(1-D)}$	$\frac{a_1 V_{bat}}{2.(1-D)}$	$\frac{a_1 V_{bat}}{2.(1-D)}$	$\frac{a_2.V_{bat}}{2.(1-D)}$	$\frac{a_2.V_{bat}}{2.(1-D)}$
4ª Etapa	0	$\frac{V_{bat}}{(1-D)}$	$\frac{a_1 V_{bat}}{(1-D)}$	0	$\frac{a_2 V_{bat}}{(1-D)}$	0

As correntes instantâneas $I_{D1}(t)$ e $I_{D2}(t)$ que circulam através dos diodos D_1 e D_2 são determinadas por (2.65) e (2.66), respectivamente.

$$I_{D1}(t) = \begin{cases} 0 & t_0 \le t \le t_1 \ e \ t_2 \le t \le t_3, \\ 0 & t_1 \le t \le t_2, \\ \frac{I_{L1}(t)}{2 \cdot \left(1 + \sum_{j=1}^n a_j\right)} & t_3 \le t \le T. \end{cases}$$
(2.65)

$$I_{D2}(t) = \begin{cases} 0 & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3, \\ \frac{I_{L1}(t)}{2 \cdot \left(1 + \sum_{j=1}^n a_j\right)} & t_1 \le t \le t_2, \\ 0 & t_3 \le t \le T. \end{cases}$$
(2.66)

As correntes médias $I_{D1(med)}$ e $I_{D2(med)}$ através dos diodos D_1 e D_2 , respectivamente, são determinadas por (2.67).

$$I_{D1(med)} = \frac{1}{T} \cdot \int_{0}^{(1-D)T} \frac{I_{L1}(t)}{2 \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)} dt.$$
(2.67)

Solucionando-se (2.67), obtém-se (2.68) em função dos parâmetros do conversor.

$$I_{D1(med)} = \frac{I_{bar}}{2}.$$
 (2.68)

Da mesma forma, as correntes eficazes através dos diodos D_1 e D_2 são determinadas por (2.69).

$$I_{D1ef} = \sqrt{\frac{1}{T} \cdot \int_{0}^{(1-D)T} \left[\frac{I_{L1}(t)}{2 \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)} \right]^{2} dt}.$$
 (2.69)

Solucionando-se (2.69), obtém-se (2.70) em função dos parâmetros do conversor.

$$I_{D1ef} = \sqrt{\frac{I_{bar}^{2}}{4.(1-D)} + \frac{(1-D).(2.D-1)^{2}.V_{bat}^{2}.T^{2}}{192.L_{1}^{2}.\left(1+\sum_{j=1}^{n}a_{j}\right)^{2}}}.$$
(2.70)

E as correntes máximas através dos diodos D_1 e D_2 são dados por (2.71).

$$I_{D1(max)} = \frac{I_{bar}}{2.(1-D)} + \frac{(2.D-1).V_{bat}.T}{8.L_1.\left(1+\sum_{j=1}^n a_j\right)}.$$
(2.71)

As correntes instantâneas $I_{D_{2j+1}}(t)$, isto é, $I_{D3}(t)$ e $I_{D5}(t)$ que circulam através dos diodos D_{2j+1} , isto é, D_3 e D_5 são determinadas por (2.72) e as correntes instantâneas $I_{D_{2j+2}}(t)$,

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

isto é, $I_{D4}(t)$ e $I_{D6}(t)$ que circulam através dos diodos D_{2j+1} , isto é, D_4 e D_6 são determinadas por (2.73).

$$I_{D_{2j+1}}(t) = I_{D3}(t) = I_{D5}(t) = \begin{cases} 0 & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3, \\ \frac{I_{L1}(t)}{\left(1 + \sum_{j=1}^n a_j\right)} & t_1 \le t \le t_2, \end{cases}$$
(2.72)
$$t_3 \le t \le T,$$
$$I_{D_{2j+2}}(t) = I_{D4}(t) = I_{D6}(t) = \begin{cases} 0 & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3, \\ 0 & t_1 \le t \le t_2, \\ \frac{I_{L1}(t)}{\left(1 + \sum_{j=1}^n a_j\right)} & t_3 \le t \le T. \end{cases}$$
(2.73)

A corrente média $I_{D_{2j+1}(med)}$ no diodo D_{2j+1} é definida por (2.74), que também define a corrente média no diodo D_{2j+2} .

$$I_{D_{2j+1}(med)} = \frac{1}{T} \cdot \int_{0}^{(1-D)T} \frac{I_{L1}(t)}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} dt.$$
(2.74)

Solucionando-se (2.74), obtém-se (2.75), em função dos parâmetros do conversor.

$$I_{D_{2j+1}(med)} = I_{bar}.$$
 (2.75)

A corrente eficaz $I_{D_{2j+1}ef}$, através do diodo D_{2j+1} é determinada por (2.76), da mesma forma define também a corrente eficaz através do diodo D_{2j+2} .

$$I_{D_{2j+1}ef} = \sqrt{\frac{1}{T} \cdot \int_{0}^{(1-D)T} \left[\frac{I_{L1}(t)}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} \right]^{2}} dt.$$
(2.76)

Solucionando-se (2.76), obtém-se (2.77) em função dos parâmetros do conversor.

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.
$$I_{D_{2,j+1}ef} = \sqrt{\frac{I_{bar}^{2}}{(1-D)} + \frac{(1-D).(2.D-1)^{2}.V_{bat}^{2}.T^{2}}{48.L_{1}^{2}.\left(1+\sum_{j=1}^{n}a_{j}\right)^{2}}}.$$
(2.77)

A corrente máxima $I_{D_{2j+1}(max)}$ que circula através do diodo D_{2j+1} é definida por (2.78), que é a mesma utilizada para determinar a corrente máxima de D_{2j+2} .

$$I_{D_{2j+1}(max)} = \frac{I_{bar}}{(1-D)} + \frac{(2.D-1)V_{bat}T}{4.L_1 \cdot \left(1 + \sum_{j=1}^n a_j\right)}.$$
(2.78)

Esforços nos capacitores grampeadores auxiliares C1, C2, C3, C4 e C5

A máxima tensão sobre o capacitor C_1 é definida por (2.8), enquanto as máximas tensões sobre os capacitores C_{2j} e C_{2j+1} são determinadas por (2.9).

A ondulação de tensão do capacitor C_1 é definida por (2.21) e as ondulações dos capacitores C_{2j} e C_{2j+1} são determinadas por (2.25).

A corrente instantânea $I_{C1}(t)$ que circula através do capacitor C_1 é determinada por (2.79).

$$I_{C1}(t) = \begin{cases} -I_{bar} & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3, \\ I_{D2}(t) - I_{bar} & t_1 \le t \le t_2, \\ I_{D1}(t) - I_{bar} & t_3 \le t \le T. \end{cases}$$
(2.79)

Substituindo-se (2.66) em (2.79), obtém-se (2.80).

$$I_{C1}(t) = \begin{cases} -I_{bar} & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3, \\ \frac{I_{L1}(t)}{2 \cdot \left(1 + \sum_{j=1}^n a_j\right)} - I_{bar} & t_1 \le t \le t_2, \\ \frac{I_{L1}(t)}{2 \cdot \left(1 + \sum_{j=1}^n a_j\right)} - I_{bar} & t_3 \le t \le T. \end{cases}$$
(2.80)

A corrente eficaz que circula através do capacitor C_1 é determinada por (2.81).

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

$$I_{Clef} = \sqrt{\frac{2}{T} \cdot \int_{0}^{(2.D-1)^{T}} (-I_{bar})^{2} dt + \frac{2}{T} \cdot \int_{0}^{(1-D)T} \left[\frac{I_{L1}(t)}{2 \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)} - I_{bar} \right]^{2} dt.$$
(2.81)

Solucionando-se (2.81), obtém-se (2.82) em função dos parâmetros do conversor.

$$I_{Clef} = \sqrt{\frac{(2.D-1).I_{bar}^{2}}{2.(1-D)} + \frac{(1-D).(2.D-1)^{2}.V_{bat}^{2}.T^{2}}{96.L_{1}^{2}.\left(1+\sum_{j=1}^{n}a_{j}\right)^{2}}}.$$
(2.82)

A ondulação de corrente que circula através do capacitor C_1 é definida por (2.83).

$$\Delta I_{C1} = \frac{I_{L1}(\mathbf{t})}{2 \cdot \left(1 + \sum_{j=1}^{n} a_j\right)} - I_{bar} - (-I_{bar}).$$
(2.83)

Solucionando-se (2.83), obtém-se (2.84) em função dos parâmetros do conversor.

$$\Delta I_{C1} = \frac{I_{bar}}{2.(1-D)} + \frac{(2.D-1).V_{bat}.T}{8.L_1 \cdot \left(1 + \sum_{j=1}^n a_j\right)} \cdot \left(1 - \frac{2.D-1}{1-D}\right).$$
(2.84)

A corrente instantânea $I_{C_{2j}}(t)$ que circula através do capacitor C_{2j} é determinada por (2.85).

$$I_{C_{2j}}(t) = \begin{cases} -I_{bar} & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3, \\ I_{Lsj}(t) - I_{bar} & t_1 \le t \le t_2, \\ -I_{bar} & t_3 \le t \le T. \end{cases}$$
(2.85)

Substituindo-se (2.52) em (2.85), obtém-se (2.86).

$$I_{C_{2j}}(t) = \begin{cases} -I_{bar} & t_0 \le t \le t_1 \ e \ t_2 \le t \le t_3, \\ \frac{I_{L1}(t)}{\left(1 + \sum_{j=1}^n a_j\right)} - I_{bar} & t_1 \le t \le t_2, \\ -I_{bar} & t_3 \le t \le T. \end{cases}$$
(2.86)

A corrente eficaz que circula através do capacitor C_{2i} é determinada por (2.87).

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

$$I_{C_{2j}ef} = \sqrt{\frac{2}{T} \cdot \int_{0}^{(2.D-1)^{T}} (-I_{bar})^{2} dt + \frac{1}{T} \cdot \int_{0}^{(1-D)T} \left\{ \left[\frac{I_{L1}(t)}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} - I_{bar} \right]^{2} + (-I_{bar})^{2} \right\} dt.$$
(2.87)

Solucionando-se (2.87), obtém-se (2.88), em função dos parâmetros do conversor.

$$I_{C_{2j}ef} = \sqrt{\left(\frac{1}{(1-D)} - 1\right) . I_{bar}^{2} + \frac{(1-D) . (2.D-1)^{2} . V_{bal}^{2} . T^{2}}{48.L_{1}^{2} . \left(1 + \sum_{j=1}^{n} a_{j}\right)^{2}}.$$
(2.88)

A ondulação de corrente que circula através do capacitor C_{2j} é definida por (2.89).

$$\Delta I_{C_{2j}} = \frac{I_{L1}(\mathbf{t})}{\left(1 + \sum_{j=1}^{n} a_j\right)} - I_{bar} - (-I_{bar}).$$
(2.89)

Solucionando-se (2.89), obtém-se (2.90) em função dos parâmetros do conversor.

$$\Delta I_{C_{2j}} = \frac{I_{bar}}{(1-D)} + \frac{(2.D-1).V_{bat}.T}{4.L_1.\left(1+\sum_{j=1}^n a_j\right)} \cdot \left(1-\frac{2.D-1}{1-D}\right).$$
(2.90)

A corrente instantânea $I_{C_{2j+1}}(t)$ que circula através do capacitor C_{2j+1} é determinada por (2.91).

$$I_{C_{2j+1}}(t) = \begin{cases} -I_{bar} & t_0 \le t \le t_1 \text{ e } t_2 \le t \le t_3, \\ -I_{bar} & t_1 \le t \le t_2, \\ I_{Lsj}(t) - I_{bar} & t_3 \le t \le T. \end{cases}$$
(2.91)

Substituindo-se (2.52) em (2.91), obtém-se (2.92).

$$I_{C_{2j+1}}(t) = \begin{cases} -I_{bar} & t_0 \le t \le t_1 \ e \ t_2 \le t \le t_3, \\ -I_{bar} & t_1 \le t \le t_2, \\ \\ \frac{I_{L1}(t)}{\left(1 + \sum_{j=1}^n a_j\right)} - I_{bar} & t_3 \le t \le T. \end{cases}$$
(2.92)

A corrente eficaz que circula através do capacitor C_{2j+1} é determinada por (2.93).

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

$$I_{C_{2j+1}ef} = \sqrt{\frac{2}{T} \cdot \int_{0}^{(2.D-1)\frac{T}{2}} (-I_{bar})^{2} dt + \frac{1}{T} \cdot \int_{0}^{(1-D)T} \left\{ \left[\frac{I_{L1}(t)}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} - I_{bar} \right]^{2} + (-I_{bar})^{2} \right\} dt.$$
(2.93)

Solucionando-se (2.93), obtém-se (2.94) em função dos parâmetros do conversor.

$$I_{C_{2j+1}ef} = \sqrt{\left(\frac{1}{(1-D)} - 1\right) . I_{bar}^{2} + \frac{(1-D) . (2.D-1)^{2} . V_{bat}^{2} . T^{2}}{48.L_{1}^{2} . \left(1 + \sum_{j=1}^{n} a_{j}\right)^{2}}.$$
(2.94)

A ondulação de corrente que circula através do capacitor C_{2j+1} é definida por (2.95).

$$\Delta I_{C_{2j+1}} = \frac{I_{L1}(\mathbf{t})}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} - I_{bar} - (-I_{bar}).$$
(2.95)

Solucionando-se (2.95), obtém-se (2.96) em função dos parâmetros do conversor.

$$\Delta I_{C_{2j+1}} = \frac{I_{bar}}{(1-D)} + \frac{(2.D-1).V_{bat}.T}{4.L_1.\left(1+\sum_{j=1}^n a_j\right)}.\left(1-\frac{2.D-1}{1-D}\right).$$
(2.96)

Cálculo da Capacitância de saída Co e Esforços de Tensão e Corrente

Os fatores envolvidos na seleção do capacitor de saída são: a ondulação da corrente na frequência de chaveamento, a ondulação da corrente de segunda harmônica, a tensão *CC* de saída, a ondulação da tensão de saída e o *hold-up time*, t_h . Capacitores eletrolíticos com capacitâncias elevadas empregados na saída geralmente possuem *RSE* que varia com a frequência sendo, normalmente, elevadas em baixa frequência. A máxima corrente do capacitor pode ser determinada pela elevação de temperatura. Bastando-se calcular a elevação da temperatura devido às ondulações das correntes de alta e de baixa frequência. A folha de dados do capacitor fornece os valores de *RSE* e da elevação de temperatura.

O hold-up time, t_h é definido como o período de tempo em que a tensão de saída permanece dentro do valor especificado, quando somente o capacitor de saída estiver mantendo a tensão no barramento *CC*, isto é, sem recebimento de energia. O *hold-up time* depende da quantidade da energia armazenada no capacitor, da potência, das tensões máxima

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

e mínima de saída [62]. Este parâmetro, normalmente, prevalece na especificação do capacitor de saída.

A energia que o capacitor deve fornecer durante *hold-up time*, t_h , é determinada por (2.97).

$$\Delta W_{(C_o)} = \frac{1}{2} \cdot C_o \cdot \left(V_{C_o(max)}^2 - V_{C_o(min)}^2 \right).$$
(2.97)

Em (2.97) $V_{C_o(max)}$ é o valor máximo sobre a tensão no capacitor e $V_{C_o(min)}$ é o valor mínimo. Sabe-se que:

$$\Delta W_{(C_a)} = P_{bar} t_h. \tag{2.98}$$

Substituindo-se (2.98) em (2.97), obtém-se (2.99).

$$P_{bar} = \frac{C_o \cdot \left(V_{C_o(max)}^2 - V_{C_o(min)}^2\right)}{2t_h}.$$
 (2.99)

Resolvendo-se (2.99), obtém-se o valor da capacitância do barramento CC, C_o por (2.100).

$$C_{o} = \frac{2.t_{h}.P_{bar}}{\left(V_{C_{o}(max)}^{2} - V_{C_{o}(min)}^{2}\right)}.$$
(2.100)

A Fig. 2.10 mostra a forma de onda da corrente drenada pela carga não linear.

Fig. 2.10 – Corrente drenada pela carga não linear.

A corrente eficaz drenada pela carga quando alimentada pelo capacitor é determinada por (2.101).

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

52

$$I_{C_{O}_ef} = \sqrt{\frac{1}{t_h}} \cdot \int_0^{t_h} I_{C_{O}_pk}^2 dt.$$
(2.101)

Solucionando-se (2.101), obtém-se (2.102).

$$I_{C_o_ef} = I_{C_o_pk} \cdot \sqrt{\frac{\Delta t}{t_h}}.$$
(2.102)

Onde o valor de $I_{C_{o_{-}}pk}$ é obtido da forma de onda da corrente apresentada na Fig. 2.9.

<u>Projeto Físico do Indutor L₁</u>

<u>Escolha do Núcleo</u>

O produto da área da seção transversal efetiva da perna central do núcleo A_e com a área da janela onde é situado o enrolamento A_w define o tamanho mínimo do núcleo que pode ser utilizado para construção do indutor L_I e é determinado por (2.103) [48].

$$A_{e} \cdot A_{w} = \frac{L_{1} \cdot I_{L1(med_max)} \cdot I_{L1ef_D(max)}}{K_{w} \cdot J_{(max)} \cdot B_{(max)}} \cdot 10^{4} \cdot [cm^{4}].$$
(2.103)

Onde:

 $J_{(max)}$ é a máxima densidade de corrente elétrica;

 $B_{(max)}$ é a máxima densidade de fluxo magnético e

 K_w é fator de utilização da área da janela.

Cálculo do Número de Espiras

O número de espiras é determinado por (2.104).

$$N_{L1} = \frac{L_1 \cdot I_{L1(med_max)}}{B_{(max)} \cdot A_e} \cdot 10^4.$$
(2.104)

Cálculo do Entreferro

O entreferro é utilizado em indutores por duas razões:

Sem entreferro a indutância é proporcional apenas à permeabilidade do núcleo, que é um parâmetro extremamente dependente da temperatura e do ponto de operação. A adição do entreferro introduz uma relutância muito maior que a relutância do núcleo fazendo com que o valor da indutância do indutor L_1 diminua e seja praticamente insensível às variações na permeabilidade do núcleo e permite que o indutor opere com valores maiores de corrente no enrolamento sem que ocorra saturação do núcleo.

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

O valor total do entreferro é dado por (2.105).

$$l_{g(total)} = \frac{N_{L_1}^2 \cdot \mu_o \cdot A_e}{L_1} \cdot 10^{-2}.$$
 [cm] (2.105)

O valor calculado por (2.105) é referente ao comprimento total do entreferro, porém, no caso dos núcleos do tipo E-E onde o entreferro normalmente é colocado nas pernas laterais, em cada perna lateral deve existir um entreferro com metade do valor calculado. Seu valor é determinado por (2.106).

$$l_g = \frac{l_{g(total)}}{2}.$$
 [cm] (2.106)

O valor de entreferro deve ser recalculado utilizando um fator de correção com a finalidade de compensar o aumento do valor da indutância do indutor L_1 provocado pelo efeito de espraiamento do fluxo, sabendo-se que um aumento do valor do entreferro reduz o valor da indutância. O fator de correção é determinado por (2.107), onde *G* é a altura da janela.

$$F_c = 1 + \frac{l_g}{\sqrt{A_e}} \cdot ln \left(\frac{2.G}{l_g}\right).$$
(2.107)

O valor do entreferro recalculado considerando o fator de correção é obtido por (2.108).

$$l_{g(recal)} = l_g . F_c. \quad [cm]$$
(2.108)

Dimensionamento dos Condutores

O cálculo da área da seção transversal necessária para conduzir a corrente do enrolamento depende da máxima densidade de corrente admitida no condutor. Conforme pode ser verificado em (2.109).

$$S_{L1} = \frac{I_{L1ef}}{J_{(\text{max})}}.$$
 (2.109)

A utilização de condutores em altas frequências deve levar em conta o efeito pelicular (*skin efect*), que devido à presença da componente em alta frequência na corrente, que produz um elevado campo elétrico no interior do condutor normal à superfície do fio, contribui para que a corrente migre do centro para a periferia do condutor, reduzindo a área por onde, efetivamente, ela flui. É comum medir o efeito pelicular por uma grandeza métrica chamada de espessura pelicular (*skin depth*) ou profundidade de penetração da corrente, a qual diminui

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

com o aumento da frequência. A profundidade de penetração da corrente Δ é determinada por (2.110).

$$\Delta = \frac{7.5}{\sqrt{f}}.$$
 [cm] (2.110)

Para mitigar o efeito pelicular, o diâmetro máximo do condutor a ser utilizado deve ser menor ou igual que o dobro do valor da profundidade Δ . O diâmetro máximo do condutor $D_{cond(max)}$ é determinado por (2.111).

$$D_{cond(max)} \le 2.\Delta. \tag{2.111}$$

Desta forma, para obter o valor da seção transversal do condutor determinado por (2.109) com o condutor escolhido, associa-se vários destes em paralelo, cujo número é determinado por (2.112).

$$n_{cond} = \frac{S_{L1}}{S_{sem isol}}.$$
(2.112)

Verificação da Possibilidade de Execução

Para finalizar o projeto físico do indutor L_l , verifica-se a possibilidade de execução da montagem do enrolamento na janela do núcleo escolhido. Para acondicionar o enrolamento calculado anteriormente é necessária uma janela mínima. Determina-se, então, o fator de utilização da janela K_u por (2.113).

$$K_u = \frac{N_{L1} \cdot n_{cond} \cdot S_{com_isol}}{A_w}.$$
(2.113)

Cálculo Térmico do Indutor L₁

Cálculo da Perdas no Enrolamento

A resistência do cobre é determinada por (2.114) [42].

$$R_{cobre} = \frac{\rho_{cond} . MLT . N_{L1}}{n_{cond} . S_{sem_isol}}.$$
(2.114)

Onde:

MLT é o comprimento médio de uma espira.

Portanto as perdas no cobre são determinadas por (2.115).

$$P_{cobre} = R_{cobre} . I_{L1ef}^{2}.$$
(2.115)

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Cálculo da Perdas no Núcleo

As variações de fluxo magnético originam dois tipos de perdas no núcleo: por correntes induzidas no núcleo (correntes de *Foucault*) e por histerese do material magnético [56].

As perdas por histerese resultam da energia consumida para girar a orientação dos domínios magnéticos dentro do material. Esta energia corresponde à área interna do laço de histerese. Como as perdas por histerese dependem da densidade de fluxo magnético B, usualmente utiliza-se um valor relativamente baixo para este parâmetro.

A evolução das perdas devido às correntes induzidas com o quadrado da frequência, leva à necessidade determinante do uso de materiais com elevada resistividade volumétrica, como a ferrite. As perdas no núcleo de ferrite são expressas por (2.116)

$$P_{nucleo} = \Delta B_{(max)}^{2,4} \cdot \left(K_H \cdot f_{L1} + K_E \cdot f_{L1}^2 \right) \cdot V_e.$$
(2.116)

Onde:

 $\Delta B_{(max)}$ é a variação máxima da densidade de fluxo magnético no núcleo;

 K_H é o coeficiente de perdas por histerese;

 K_E é o coeficiente de perdas por correntes parasitas;

 f_{L1} é a Frequência de operação do indutor L_1 .

A variação máxima da densidade de fluxo magnético no núcleo $\Delta B_{(max)}$ é determinada por (2.117).

$$\Delta B_{(max)} = B_{(max)} \cdot \frac{\Delta I_{L1(max)}}{I_{L1(max)}}.$$
(2.117)

A frequência de operação do indutor L_{I}, f_{LI} é de determinada por (2.118).

$$f_{L1} = 2.f. (2.118)$$

<u>Perdas Totais</u>

As perdas totais no indutor L_1 , $P_{L1(total)}$, causadas pelas não idealidades são compostas pelas perdas no enrolamento e pelas perdas no núcleo (ou perdas magnéticas). E são determinadas por (2.119).

$$P_{L1(total)} = P_{cobre} + P_{nucleo}.$$
 (2.119)

Cálculo da Resistência Térmica do Núcleo

A resistência térmica do núcleo pode ser estimada empiricamente por (2.120) [48].

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

$$R_{termica\ nucleo} = 23. (A_w.A_e)^{-0.37}.$$
 (2.120)

Cálculo da Elevação de Temperatura

A elevação de temperatura é determinada por (2.121).

$$\Delta T_{L1} = R_{termica_nucleo} P_{L1(total)}.$$
(2.121)

Projeto Físico do Tranformador Tr

O transformador é projetado considerando-se que o valor da corrente de magnetização é desprezível em relação à corrente de carga.

<u>Escolha do Núcleo</u>

O produto da área da seção transversal efetiva da perna central do núcleo A_e com a área da janela onde é situado o enrolamento A_w define o tamanho mínimo do núcleo que pode ser utilizado para construção do transformador Tr e é determinado por (2.122), de acordo com [48] e [50].

$$A_{e}.A_{w} = \frac{P_{proc_Tr(total)}}{2.f.K_{t}.K_{p}.K_{w}.J_{(max)}.\Delta B_{(max)}} \cdot 10^{4} \quad [\text{cm}^{4}].$$
(2.122)

Onde:

 $P_{proc_Tr(total)}$ é a potência ativa total processada pelo transformador.

 K_t é o fator de topologia;

 K_p é o fator de utilização do primário.

Cálculo do Número de Espiras

O número de espiras de cada primário L_{p1} e L_{p2} é determinado por (2.123).

$$N_{Lp1} = N_{Lp2} = \frac{\frac{V_{bar}}{2 \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)}}{4 \cdot \Delta B_{(max)} \cdot A_{e} \cdot f} \cdot 10^{4}.$$
(2.123)

O número de espiras de cada secundário L_{sj} é determinado por (2.124).

$$N_{Lsj} = a_j \cdot N_{Lp1}.$$
 (2.124)

Dimensionamento dos Condutores

O cálculo da área da seção transversal necessária para conduzir a corrente dos enrolamentos primários e secundários depende da máxima densidade de corrente admitida no condutor. Conforme pode ser verificado em (2.125) e (2.126).

$$S_{Lp1} = \frac{I_{Lp1ef}}{J_{(max)}}.$$
 (2.125)

$$S_{Lsj} = \frac{I_{Lsjef(max)}}{J_{(max)}}.$$
(2.126)

A profundidade de penetração da corrente Δ é determinada a partir de (2.110).

O diâmetro máximo do condutor $D_{cond(max)}$ é determinado a partir de (2.111).

Desta forma, para obter o valor da seção transversal dos condutores determinados por (2.125) e (2.126) com o condutor escolhido, associa-se vários destes em paralelo, cujos números são determinados por (2.127) e (2.128).

$$n_{cond_Lp1} = n_{cond_Lp2} = \frac{S_{Lp1}}{S_{sem_isol}}.$$
(2.127)

$$n_{cond_Lsj} = \frac{S_{Lsj}}{S_{sem\ isol}}.$$
(2.128)

Verificação da Possibilidade de Execução

Para finalizar o projeto físico do transformador T_r , verifica-se a possibilidade de execução da montagem do enrolamento na janela do núcleo escolhido. Para acondicionar o enrolamento calculado anteriormente é necessária uma janela mínima. O fator de utilização da janela K_u é determinado por (2.129).

$$K_{u} = \frac{\left[N_{Lp1} \cdot n_{cond_Lp1} + N_{Lp2} \cdot n_{cond_Lp2} + \left(\sum_{j=1}^{n} N_{Lsj} \cdot n_{cond_Lsj}\right)\right] \cdot S_{com_isol}}{A_{w}}$$
(2.129)

Cálculo Térmico do Tranformador Tr

Cálculo da Perdas no Enrolamento

Nos primários a resistência do cobre é determinada por (2.130).

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

$$R_{cobre_primario(total)} = \frac{\rho_{cond}.MLT}{S_{sem_isol}} \cdot \left(\frac{N_{Lp1}}{n_{cond_Lp1}} + \frac{N_{Lp2}}{n_{cond_Lp2}}\right).$$
(2.130)

Sendo a perda no cobre do primário determinada por (2.131).

$$P_{cobre_primario} = R_{cobre_primario(total)} I_{Lp1ef}^{2}.$$
(2.131)

Nos secundários a resistência do cobre é determinada por (2.132).

$$R_{cobre_secundario(total)} = \frac{\rho_{cond}.MLT}{S_{sem_isol}} \cdot \sum_{j=1}^{n} \frac{N_{Lsj}}{n_{cond_Lsj}} \cdot$$
(2.132)

Sendo a perda no cobre do secundário determinada por (2.133).

$$P_{cobre_secundario} = R_{cobre_secundario(total)} I_{Lsef}^{2}.$$
(2.133)

Então a perda total no cobre do transformador Tr é determinada por (2.134).

$$P_{cobre} = P_{cobre_primario} + P_{cobre_secundario}.$$
 (2.134)

<u>Cálculo da Perdas no Núcleo</u>

As perdas no núcleo de ferrite são expressas por (2.135)

$$P_{nucleo} = \Delta B_{(max)}^{2,4} \cdot \left(K_H \cdot f_{Tr} + K_E \cdot f_{Tr}^2 \right) \cdot V_e.$$
(2.135)

Onde:

 f_{Tr} é a frequência de operação do transformador.

<u>Perdas Totais</u>

As perdas totais no transformador *Tr*, $P_{Tr(total)}$, são compostas pelas perdas no enrolamento e pelas perdas no núcleo (ou perdas magnéticas). E são determinadas por (2.136).

$$P_{Tr(total)} = P_{cobre} + P_{nucleo}.$$
 (2.136)

Cálculo da Resistência Térmica do Núcleo

A resistência térmica do núcleo pode ser estimada empiricamente por (2.137) [48].

$$R_{termica_nucleo} = 23. (A_w.A_e)^{-0.37}.$$
 (2.137)

Cálculo da Elevação de Temperatura

A elevação de temperatura é determinada por (2.138).

$$\Delta T_{Tr} = R_{termica_nucleo} \cdot P_{Tr(total)}.$$
(2.138)

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Potência Processada pelo Transformador Tr

O cálculo da potência aparente do transformador utiliza os valores eficazes de tensão e de corrente em todos os enrolamentos.

Uma parcela da energia é conduzida pelos enrolamentos primário e secundário, sem a transformação eletromagnética, visto que não há isolamento galvânico entre os enrolamentos. Nesta configuração pode-se reduzir a potência aparente processada pelo sistema magnético, e consequentemente, reduzir peso e volume do conversor.

Potência Aparente Processada pelo Primário do Transformador Tr

Na segunda etapa de operação parte da energia recebida no enrolamento primário L_{p2} é transferida diretamente para o enrolamento primário L_{p1} e a outra parte é transferida por indução eletromagnética. A corrente que flui através de L_{p1} é a parte da corrente do indutor L_1 transferida diretamente, que é igual à corrente através do diodo D_2 . Desta forma, a potência aparente transferida diretamente é determinada por (2.139).

$$S_{transf_dir(2^{a} etapa)} = V_{Lp2ef}.I_{Lp1ef}.$$
(2.139)

Ainda nesta etapa, a tensão sobre o enrolamento L_{p1} é uma medida da energia induzida. Assim a potência aparente transferida do enrolamento L_{p2} ao enrolamento L_{p1} por indução eletromagnética é determinada por (2.140).

$$S_{transf_ind(2^{a} etapa)} = V_{Lp1ef} .$$
(2.140)

Portanto, a potência aparente total transferida do enrolamento L_{p1} ao enrolamento L_{p2} é determinada por (2.141).

$$S_{total(2^{a} etapa)} = S_{transf_dir(2^{a} etapa)} + S_{transf_ind(2^{a} etapa)}.$$
(2.141)

Substituindo (2.139) e (2.140) em (2.141), obtém-se (2.142).

$$S_{total(2^{a} etapa)} = (V_{Lp1ef} + V_{Lp2ef}).I_{Lp1ef}.$$
(2.142)

Observa-se, na segunda etapa de operação, que a corrente que flui através do enrolamento L_{p2} , determinada por (2.47), é uma parcela da corrente através do enrolamento L_{p1} . Assim apenas uma parte da potência aparente é processada pelo transformador. A potência aparente processada pelo primário na 2^a etapa de operação é determinada por (2.143).

$$S_{proc_prim(2^{a} etapa)} = S_{transf_ind(2^{a} etapa)} = V_{Lplef}.I_{Lplef}.$$
(2.143)

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Na quarta etapa acontece de forma análoga, bastando que se observe o enrolamento correspondente. Assim a potência aparente processada pelo transformador nesta etapa é determinada por (2.144).

$$S_{proc_prim(4^{a} etapa)} = V_{Lp2ef}.$$
(2.144)

Obtém-se a potência aparente total processada pelo transformador no primário somando-se as potências aparentes processadas na segunda e quarta etapas, já que na primeira e terceira etapas não há processamento de potência. A potência aparente total processada pelo transformador no primário é determinada por (2.145).

$$S_{proc_prim(total)} = V_{Lp1ef} . I_{Lp1ef} + V_{Lp2ef} . I_{Lp2ef} .$$
(2.145)

Sabendo-se que a corrente através do enrolamento primário L_{p1} na segunda etapa é igual à corrente através do diodo D_2 e que a corrente através do enrolamento primário L_{p2} é igual à corrente através do diodo D_1 , (2.145) pode ser reescrita como (2.146).

$$S_{proc_prim(total)} = V_{Lp1ef} . I_{D2ef} + V_{Lp2ef} . I_{D1ef}.$$
(2.146)

Potência Aparente Processada pelo Secundário do Transformador Tr

Nota-se que quase toda a energia recebida pelo secundário do primário é transferida por indução eletromagnética, portanto a potência aparente processada no secundário na segunda etapa é determinada por (2.147).

$$S_{proc_sec(2^{a}etapa)} = \sum_{j=1}^{n} V_{Lsjef} . I_{D_{2j+1}ef}.$$
 (2.147)

E na quarta etapa é determinada por (2.148).

$$S_{proc_sec(4^{a} etapa)} = \sum_{j=1}^{n} V_{Lsjef} . I_{D_{2j+2}ef}.$$
 (2.148)

Obtém-se a potência aparente total processada pelo transformador no secundário somando as potências aparentes processadas na segunda e quarta etapas, já que na primeira e terceira etapas não há processamento de potência. A potência aparente total processada pelo transformador no secundário é determinada por (2.149).

$$S_{proc_sec(total)} = S_{proc_sec(2^{a} etapa)} + S_{proc_sec(4^{a} etapa)}.$$
 (2.149)

Substituindo (2.147) e (2.148) em (2.149), obtém-se (150).

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

$$S_{proc_sec(total)} = \sum_{j=1}^{n} V_{Lsjef} \left(I_{D_{2j+1}ef} + I_{D_{2j+2}ef} \right).$$
(150)

Potência Aparente Total Processada pelo Transformador Tr

Conclui-se que a potência aparente total processada pelo transformador é obtida somando-se as potências aparentes totais processadas no primário e no secundário, sendo determinada por (2.151).

$$S_{proc_Tr(total)} = S_{proc_prim(total)} + S_{proc_sec(total)}.$$
(2.151)

Substituindo-se (2.146) e (2.150) em (2.151), obtém-se (2.152).

$$S_{proc_Tr(total)} = V_{Lp1ef} \cdot I_{D2ef} + V_{Lp2ef} \cdot I_{D1ef} + \sum_{j=1}^{n} V_{Lsjef} \left(I_{D_{2j+1}ef} + I_{D_{2j+2}ef} \right).$$
(2.152)

Substituindo-se (2.42), (2.43), (2.70) e (2.77) em (2.152), obtém-se (2.153).

$$S_{proc_Tr(total)} = 2.(A1).\left(\frac{1}{\sqrt{2}}.\sqrt{A2}\right) + 2.(A3).\left(\frac{1}{\sqrt{2}}.\sqrt{A4}\right).$$
 (2.153)

Onde:

$$A1 = \frac{V_{bar}}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} \cdot \sqrt{\frac{1 - D}{2}},$$

$$A2 = \frac{I_{bar}^{2}}{4 \cdot (1 - D)} + \frac{(1 - D) \cdot (2 \cdot D - 1)^{2} \cdot V_{bar}^{2} \cdot T^{2}}{192 \cdot L_{1}^{2} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)^{2}},$$

$$A3 = \frac{a_{j} \cdot V_{bar}}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} \cdot \sqrt{\frac{1 - D}{2}},$$

$$A4 = \frac{I_{bar}^{2}}{(1 - D)} + \frac{(1 - D) \cdot (2 \cdot D - 1)^{2} \cdot V_{bar}^{2} \cdot T^{2}}{48 \cdot L_{1}^{2} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)^{2}}.$$

Desenvolvendo-se (2.153), obtém-se (2.154).

$$S_{proc_Tr(total)} = (A1) \cdot \left(\frac{1}{\sqrt{2}} \cdot \sqrt{A2}\right) \cdot (A3).$$
 (2.154)

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

Onde:

$$A1 = \frac{V_{bar}}{\left(1 + \sum_{j=1}^{n} a_{j}\right)} \cdot \sqrt{\frac{1 - D}{2}},$$

$$A2 = \frac{I_{bar}^{2}}{\left(1 - D\right)} + \frac{\left(1 - D\right) \cdot \left(2 \cdot D - 1\right)^{2} \cdot V_{bat}^{2} \cdot T^{2}}{48 \cdot L_{1}^{2} \cdot \left(1 + \sum_{j=1}^{n} a_{j}\right)^{2}},$$

$$A3 = 1 + \sum_{j=1}^{n} 2 \cdot a_{j}.$$

Substituindo-se (2.16) e 2.33 em (2.154), obtém-se (2.155).

$$S_{proc_Tr(total)} = \left[\frac{1 + \sum_{j=1}^{n} \left(2.a_{j}\right)}{2.\left(1 + \sum_{j=1}^{n} a_{j}\right)} \cdot \sqrt{1 + \frac{\% IL_{med}^{2}}{12.10^{4}}}\right] \cdot P_{bar}.$$
(2.155)

Onde $\%IL_{méd}$ é o percentual da ondulação máxima de corrente através de L_1 .

Obtém-se o valor da potência ativa total processada pelo transformador adotando $\% IL_{med}$ igual à zero, isto é, considerando a ondulação de corrente através do indutor L_1 igual a zero. A potência ativa é determinada por (2.156).

$$P_{proc_Tr(total)} = \left[\frac{1 + \sum_{j=1}^{n} (2.a_j)}{2.\left(1 + \sum_{j=1}^{n} a_j\right)}\right].P_{bar}.$$
(2.156)

Rearranjando os termos em (2.155) obtém-se a potência aparente total processada pelo transformador parametrizada, de acordo com (2.157).

$$\overline{S}_{proc_Tr(total)} = \frac{S_{proc_Tr(total)}}{P_{bar} \cdot \sqrt{1 + \frac{\% IL_{med}}{12.10^4}}} = \frac{1 + \sum_{j=1}^{n} (2.a_j)}{2 \cdot \left(1 + \sum_{j=1}^{n} a_j\right)}.$$
(2.157)

A Fig. 2.11 apresenta graficamente potência aparente total processada pelo transformador parametrizada definida em (2.157). Conclui-se que quanto maior a relação de transformação, maior será a potência processada pelo transformador.

Fig. 2.11 - Potência aparente total processada pelo transformador parametrizada.

2.5 CONSIDERAÇÕES FINAIS

Neste capítulo foi realizada a análise teórica do conversor proposto. A análise qualitativa consistiu em apresentar e descrever as etapas de operação. Da análise quantitativa foram obtidas equações que permitem especificar os elementos armazenadores de energia (indutor e capacitores), semicondutores e elementos passivos do conversor. Como cálculo dos esforços de tensão e corrente dos componentes do conversor e da potência processada pelo transformador.

A partir da análise teórica verificou-se que as tensões sobre as chaves são grampeadas pelo capacitor de saída C_I , que a tensão de saída é a soma das tensões sobre os capacitores de saída, que o ganho de tensão pode ser elevado bastando aumentar o número de enrolamentos secundários e, ou a relação de transformação. Mostrou-se a especificação dos capacitores de filtro de saída baseada na energia cedida durante o *hold-up time* e que a potência processada pelo transformador pode ser reduzida, já que parte da energia é transferida para carga diretamente, sem indução eletromagnética.

CAPÍTULO II – Análise Qualitativa e Quantitativa do Conversor CC-CC *Boost* Baseado na Célula de Comutação de Três Estados para Alimentação de Inversores com Divisor Capacitivo.

CAPÍTULO III

PROCEDIMENTO E EXEMPLO DE PROJETO

3.1 CONSIDERAÇÕES INICIAIS

Este capítulo tem como objetivo apresentar o procedimento e exemplo de projeto do conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo operando no modo de condução contínua de corrente com razão cíclica maior de 0,5, baseado na análise teórica apresentada no capítulo anterior.

3.2 ESPECIFICAÇÕES DO CONVERSOR

As especificações do conversor são apresentadas na Tabela 3.1.

	mínima	$V_{bat(min)} = 42$ V
Tensão de entrada (fornecida pelo banco de baterias)	nominal	$V_{bat} = 48 \mathrm{V}$
	máxima	$V_{bat(max)} = 54$ V
Potência máxima de saída		$P_{bar} = 1 \mathrm{kW}$
Tensões de saída nominal		$V_{bar} = 400 \mathrm{V}$

A Tabela 3.2 apresenta os parâmetros adotados do projeto.

TABELA 3.2 – PARÂMETROS ADOTADOS PARA O PROJETO.		
Frequência de comutação das chaves	f = 25 kHz	
Ondulação máxima de corrente através do indutor L_1	$\Delta I_{L1(max)} = 0, 2 \cdot I_{L1(med_max)}$	
Ondulação máxima da tensão no barramento CC	$\Delta V_{bar(max)} = 0,01.V_{bar}$	
Número de enrolamentos secundários	<i>n</i> = 2	
Relações de transformação	$a_1 = a_2 = a$	
Rendimento	$\eta = 93\%$	

3.3 PROJETO E ESPECIFICAÇÃO DOS COMPONENTES DO CONVERSOR

3.3.1 CÁLCULO DOS PARÂMETROS BÁSICOS

A seguir são realizados os cálculos da razão cíclica, da corrente de saída, da ondulação máxima de corrente através do indutor L_1 , ondulação máxima de tensão no barramento CC.

<u>Cálculo da Razão Cíclica D_(min), D_n e D_(max)</u>

As razões cíclicas: $D_{(min)}$, $D_n \in D_{(max)}$ são determinadas a partir de (2.13).

$$D_{(min)} = 1 - \frac{54}{400} \cdot (1 + a_1 + a_2) = 0,595$$
$$D_n = 1 - \frac{48}{400} \cdot (1 + a_1 + a_2) = 0,64$$
$$D_{(max)} = 1 - \frac{42}{400} \cdot (1 + a_1 + a_2) = 0,685$$

Cálculo da Corrente de Saída Ibar

A corrente de saída é determinada a partir das especificações do conversor apresentadas na Tabela 3.1 e de (3.1).

$$I_{bar} = \frac{P_{bar}}{V_{bar}}.$$
(3.1)

Substituindo os valores em (3.1), obtém-se:

$$I_{bar} = \frac{1000}{400} = 2,5\text{A}$$

Cálculo da Potência de Entrada P_{bat}

A potência de entrada é determinada a partir das especificações e parâmetros apresentados nas Tabelas 3.1 e 3.2 e de (3.2).

$$P_{bat} = \frac{P_{bar}}{\eta}.$$
(3.2)

Substituindo os valores em (3.2), obtém-se:

$$P_{bat} = \frac{1000}{0.93} = 1,075$$
kW

CAPÍTULO III - Procedimento e Exemplo de Projeto.

Cálculo da Corrente Média Máxima através do Indutor L₁

A corrente média máxima através do indutor L_1 é determinada por (2.33) ou (3.3), admitindo a tensão de entrada mínima, razão cíclica máxima e considerando o rendimento adotado, sendo estas obtidas a partir das especificações do conversor apresentadas na Tabela 3.1.

$$I_{L1(med_max)} = \frac{P_{bat}}{V_{bat(min)}}.$$
(3.3)

Substituindo os valores em (2.33) ou (3.3), obtém-se:

$$I_{L1(med_max)} = \frac{1075}{42} = 25,6A$$
$$I_{L1(med_max)} = \frac{2 \cdot 5 \cdot (1+2)}{(1-0,685) \cdot 0,93} = 25,6A$$

<u>Cálculo da Ondulação Máxima de Corrente através do Indutor $L_1 \Delta I_{L1}$ </u>

A ondulação máxima de corrente através do indutor L_1 é determinada a partir dos parâmetros adotados para o projeto apresentados na Tabela 2.4.

$$\Delta I_{L1(max)} = 0, 2 \cdot 25, 6 = 5, 12A$$

<u>Cálculo da Ondulação Máxima da Tensão no Barramento CC ΔV_{bar} </u>

A ondulação máxima da tensão no barramento *CC* é determinada a partir dos parâmetros adotados para o projeto apresentados na Tabela 2.4.

$$\Delta V_{bar(max)} = 0,01 \cdot 400 = 4V$$

3.3.2 DIMENSIONAMENTO DO INDUTOR DE ENTRADA L_1

A seguir são realizados os cálculos da indutância dos esforços de corrente, o projeto e o cálculo térmico do indutor L_1 .

<u>Cálculo da Indutância</u>

O valor da indutância do indutor L_1 é obtido por (2.17).

$$L_1 = \frac{40 \cdot 10^{-6} \cdot 400}{16 \cdot 5, 12 \cdot (1+2)} = 65, 10 \mu \text{H}$$

O valor adotado da indutância do indutor L_1 para o projeto é de 60µH.

Esforços de Corrente

A corrente eficaz que circula através do indutor L_1 , admitindo-se a tensão de entrada mínima, razão cíclica máxima e considerando o rendimento adotado, é obtida a partir de (2.37).

$$I_{L1ef_D(max)} = \sqrt{\left[\frac{2,5\cdot(1+2)}{(1-0,685)\cdot 0,93}\right]^2 + \left[\frac{(2\cdot 0,685-1)\cdot 42\cdot 40\cdot 10^{-6}}{\sqrt{48}\cdot 60\cdot 10^{-6}}\right]^2} = 25,65A$$

A corrente de máxima que circula através do indutor L_1 é obtida, para as mesmas condições, a partir de (2.34).

$$I_{L1(max)_D(max)} = \frac{2,5 \cdot (1+2)}{(1-0,685)0,93} + \frac{(2 \cdot 0,685 - 1) \cdot (1-0,685) \cdot 40 \cdot 10^{-6} \cdot 400}{4 \cdot 60 \cdot 10^{-6} \cdot (1+2)} = 28,19A$$

Projeto Físico do Indutor L₁

Escolha do Núcleo

Os parâmetros utilizados em (2.103) são definidos na Tabela 3.3.

TABELA 3.3 – PARÂMETROS DE PROJETO DO INDUTOR L_{I}	
---	--

Fator de utilização da área da janela adotado	$K_{w} = 0, 7$
Máxima densidade de corrente elétrica	$J_{(max)} = 400 \mathrm{A/cm^2}$
Máxima densidade de fluxo magnético	$B_{(max)} = 0,35T$
Permeabilidade do vácuo	$\mu_o = 4.\pi . 10^{-7} \text{ H/m}$

Substituindo os valores da Tabela 3.3 em (2.103), obtém-se:

$$A_e \cdot A_w = \frac{60 \cdot 10^{-6} \cdot 25, 6 \cdot 25, 65}{0, 7 \cdot 400 \cdot 0, 35} \cdot 10^4 = 4,02 \text{ cm}^4$$

O núcleo de ferrite selecionado é o *EE-55/28/21-IP12* do fabricante *Thornton*, cujas características são apresentadas na tabela 3.4.

Área seção transversal efetiva da perna central do núcleo	$A_e = 3,54 \text{ cm}^2$
Área efetiva da janela	$A_w = 2,50 \text{cm}^2$
Produto das áreas do núcleo e da janela	$A_{w}.A_{e} = 8,85 \text{cm}^{4}$
Altura da janela	G = 2.1,85 = 3,70cm
Comprimento médio de uma espira	MLT = 11,60 cm
Volume efetivo do núcleo	$V_e = 42,50 \text{ cm}^3$

TABELA 3.4 – CARACTERÍSTICAS DO NÚCLEO EE-55/28/21-IP12.

Cálculo do Número de Espiras

O número de espiras é obtido a partir de (2.104).

$$N_{L1} = \frac{60 \cdot 10^{-6} \cdot 25, 6}{0,35 \cdot 3,54} \cdot 10^4 = 12,426 \text{esp}$$

O número de espiras adotado é igual a 13 espiras.

Cálculo do Entreferro

O valor total do entreferro é determinado por (2.105).

$$l_{g(total)} = \frac{13^2 \cdot 1,2566 \cdot 10^{-6} \cdot 3,54}{60 \cdot 10^{-6}} \cdot 10^{-2} = 0,125 \text{ cm}$$

Como o núcleo escolhido é do tipo E-E, o entreferro em cada lateral terá valor igual à metade do valor calculado por (2.105). Então:

$$l_g = \frac{0,125}{2} = 0,063$$
cm

O fator de correção é determinado por (2.107).

$$F_c = 1 + \frac{0,063}{\sqrt{3,54}} \cdot ln\left(\frac{2 \cdot 1,85}{0,063}\right) = 1,159$$

O valor do entreferro recalculado considerando o fator de correção é obtido por (2.108).

$$l_{g(recal)} = 0,063 \cdot 1,159 = 0,0726$$
cm

Observa-se, no entanto, que o valor final do entreferro é resultado de ajustes realizados na montagem do indutor.

Dimensionamento dos Condutores

O valor da área da seção transversal dos condutores é obtido por (2.109).

$$S_{L1} = \frac{25,65}{400} = 0,06412 \text{ cm}^2$$

A profundidade de penetração da corrente Δ é determinada por (2.110).

$$\Delta = \frac{7,5}{\sqrt{25000}} = 0,047 \text{cm}$$

O diâmetro máximo do condutor considerando a profundidade é determinado por (2.111).

$$D_{cond(max)} \leq 0,095$$
 cm

O condutor escolhido para o projeto é o fio esmaltado 22 AWG que tem suas características descritas na tabela 3.5.

TABELA 3.5 – CARACTERÍSTICAS DO FIO ESCOLHIDO 22 AWO	Ĵ.
--	----

Área seção transversal	Sem isolamento	$S_{sem_{isol}} = 3,255 \cdot 10^{-3} \text{ cm}^2$
	Com isolamento	$S_{com_{isol}} = 4,013 \cdot 10^{-3} \mathrm{cm}^2$
Diâmetro	Sem isolamento	$D_{sem_isol} = 64 \cdot 10^{-3} \mathrm{cm}$
	Com isolamento	$D_{com_{isol}} = 71 \cdot 10^{-3} \mathrm{cm}$
Resistência linear a 100°C		$R_l = 0,708 \cdot 10^{-3} \Omega/\mathrm{cm}$

O número de condutores associados em paralelo para obter o valor da seção transversal do condutor escolhido é determinado por (2.112).

$$n_{cond} = \frac{64, 12 \cdot 10^{-3}}{3, 255 \cdot 10^{-3}} = 19,70$$
 condutores

O número de condutores em paralelo adotado é igual a 20 condutores.

Verificação da Possibilidade de Execução

O fator de utilização da janela K_u por (2.113).

$$K_u = \frac{13 \cdot 20 \cdot 4,013 \cdot 10^{-3}}{2,5} = 0,417$$

CAPÍTULO III - Procedimento e Exemplo de Projeto.

Observa-se que o valor fator de utilização da janela K_u é menor que o valor fator de utilização da janela adotado K_w , portanto a montagem é possível.

A tabela 3.6 apresenta os resultados do projeto do indutor L_{L}

Valor da indutância	$L_1 = 60 \mu \mathrm{H}$
Núcleo escolhido	<i>EE</i> -55/28/21- <i>IP</i> 12 (<i>Thornton</i>)
Número de espiras	$N_{L1} = 13 \mathrm{esp}$
Fio esmaltado	22 <i>AWG</i>
Número de condutores em paralelo	$n_{cond} = 20$ condutores
Entreferro	$l_{g(recal)} = 72, 6 \cdot 10^{-3} \mathrm{cm}$

TABELA 3.6 – RESULTADOS DO PROJETO DO INDUTOR L_1 .

Cálculo Térmico do Indutor L₁

Cálculo da Perdas no Enrolamento

A resistência do cobre é determinada por (2.114)

$$R_{cobre} = \frac{2,078 \cdot 10^{-6} \cdot 11, 6 \cdot 13}{20 \cdot 3,255 \cdot 10^{-3}} = 4,814 \cdot 10^{-3} \Omega$$

Onde $\rho_{cond} = 2,078.10^{-6} \Omega.$ cm é a resistividade do cobre a 70°C.

As perdas no cobre são determinadas por (2.115)

$$P_{cobre} = 4,814 \cdot 10^{-3} \cdot 25,65^2 = 3,167 \text{W}$$

Cálculo da Perdas no Núcleo

As perdas no núcleo de ferrite são expressas por (2.116).

Os valores dos parâmetros mencionados em (2.116) são definidos na a Tabela 3.7.

Coeficiente de perdas por histerese	$K_H = 4 \cdot 10^{-5}$
Coeficiente de perdas por correntes parasitas	$K_E = 4 \cdot 10^{-10}$
Volume do núcleo	$V_e = 23,30 \text{ cm}^3$

CAPÍTULO III - Procedimento e Exemplo de Projeto.

A variação máxima da densidade de fluxo magnético no núcleo $\Delta B_{(max)}$ é determinada por (2.117).

$$\Delta B_{(max)} = 0,35 \cdot \frac{5,12}{28,19} = 0,064 \mathrm{T}$$

A frequência de operação do indutor L_1 é de determinada por (2.118).

$$f_{L1} = 2 \cdot 25 \cdot 10^{-3} = 50 \text{ kHz}$$

Portanto, substituindo os valores da Tabela 3.7 e os obtidos por (2.117) e (2.118) em (2.116) obtém-se:

$$P_{nucleo} = 0,064^{2,4} \cdot \left[4 \cdot 10^{-5} \cdot 50 \cdot 10^3 + 4 \cdot 10^{-10} \cdot (50 \cdot 10^3)^2 \right] \cdot 42,50 = 0,1711 \text{W}$$

Perdas Totais

As perdas totais no indutor $L_I P_{L1(total)}$ causadas pelas não idealidades são determinadas por (2.119).

$$P_{L1(total)} = 3,167 + 0,1711 = 3,338$$
W

Cálculo da Resistência Térmica do Núcleo

A resistência térmica do núcleo é determinada por (2.120).

$$R_{termica_nucleo} = 23 \cdot (8,85)^{-0.37} = 10,265 \, {^{\circ}C} / W$$

Cálculo da Elevação de Temperatura

A elevação de temperatura é determinada por (2.121)

$$\Delta T_{L1} = 10,265 \cdot 3,338 = 34,265^{\circ}C$$

3.3.3 DIMENSIONAMENTO DO TRANSFORMADOR *TR*

A seguir são realizados os cálculos dos esforços de tensão e corrente, o projeto e o cálculo térmico do transformador *Tr*.

Esforços de Tensão e Corrente

As tensões máximas sobre os enrolamentos primários e secundários do transformador Tr são obtidas a partir de (2.38) e (2.39), respectivamente.

$$V_{Lp1(max)} = V_{Lp2(max)} = \frac{400}{2 \cdot (1+2)} = 66,67V$$
$$V_{Ls1(max)} = \frac{a_1 \cdot V_{bar}}{2 \cdot (1+a_1+a_2)} = \frac{1 \cdot 400}{2 \cdot (1+2)} = 66,67V$$
$$V_{Ls2(max)} = \frac{a_2 \cdot V_{bar}}{2 \cdot (1+a_1+a_2)} = \frac{1 \cdot 400}{2 \cdot (1+2)} = 66,67V$$

As tensões eficazes máximas sobre os enrolamentos primários e secundários do transformador Tr, admitindo-se razão cíclica mínima, são obtidas a partir de (2.42) e (2.43), respectivamente.

$$V_{Lpef(max)} = \frac{400}{(1+2)} \cdot \sqrt{\frac{1-0,595}{2}} = 60V$$
$$V_{Ls1ef(max)} = V_{Ls2ef(max)} = \frac{1.400}{(1+2)} \cdot \sqrt{\frac{1-0,595}{2}} = 60V$$

A corrente eficaz máxima que circula através de cada enrolamento do primário do transformador Tr, admitindo-se tensão mínima e razão cíclica máxima, é obtida a partir de (2.49).

$$I_{Lpef(max)} = \sqrt{\left[\frac{2,5^2}{4\cdot(1-0,685)^2} + \frac{(2\cdot0,685-1)^2\cdot42^2\cdot(40.10^{-6})^2}{192\cdot(60\cdot10^{-6})^2\cdot(1+2)^2}\right]} \cdot \left[5 + (3-2\cdot0,685)\cdot(2)^2\right]$$

= 13,50A

A corrente máxima que circula através de cada enrolamento do primário do transformador Tr, admitindo-se tensão mínima e razão cíclica máxima, é obtida a partir de (2.50).

$$I_{Lp(max)} = \left[\frac{2,5}{2\cdot(1-0,685)} + \frac{42\cdot40\cdot10^{-6}\cdot(2.0,685-1)}{8\cdot60\cdot10^{-6}\cdot(1+2)}\right] \cdot \left[2\cdot(1+2)-1\right] = 22A$$

As correntes eficazes máximas que circulam através de cada enrolamento do secundário do transformador *Tr*, admitindo-se tensão mínima e razão cíclica máxima, são obtidas a partir de (2.55).

$$I_{Ls1ef(max)} = I_{Ls2ef(max)} = \sqrt{\left[\frac{2 \cdot 2, 5^2}{(1 - 0, 685)} + \frac{(1 - 0, 685) \cdot (2 \cdot 0, 685 - 1)^2 \cdot 42^2 \cdot (40 \cdot 10^{-6})^2}{24 \cdot (60 \cdot 10^{-6})^2 \cdot (1 + 2)^2}\right]}$$

= 6,31A

As correntes máximas que circulam através de cada enrolamento do secundário do transformador *Tr*, admitindo-se tensão mínima e razão cíclica máxima, são obtidas a partir de (2.56).

$$I_{Ls1(max)} = I_{Ls2(max)} = \frac{2,5}{(1-0,685)} + \frac{42 \cdot 40 \cdot 10^{-6} \cdot (2 \cdot 0,685 - 1)}{4 \cdot 60 \cdot 10^{-6} \cdot (1+2)} = 8,80$$
A

Potência Processada pelo Transformador Tr

A potência aparente total processada pelo transformador Tr é obtida por (2.155).

$$S_{proc_{Tr(total)}} = \left[\frac{1+2\cdot 2}{2\cdot (1+2)} \cdot \sqrt{1+\frac{20^2}{12.10^4}}\right] \cdot 1000 = 834,72$$
VA

A potência ativa total processada pelo transformador Tr é obtida por (2.156).

$$P_{proc_{Tr(total)}} = \left[\frac{1+2\cdot 2}{2\cdot (1+2)}\right] \cdot 1000 = 833,33 \text{W}$$

<u>Projeto Físico do Tranformador Tr</u>

O transformador é projetado considerando-se que o valor da corrente de magnetização é desprezível em relação à corrente de carga.

<u>Escolha do Núcleo</u>

O produto da área seção transversal efetiva da perna central do núcleo A_e com a área da janela onde é situado o enrolamento A_w é determinado por (2.122), de acordo com [48] e [50].

Onde os parâmetros utilizados em (2.122) são definidos na Tabela 3.8.

Fator de topologia	$K_t = 1$
Fator de utilização da área da janela do núcleo	$K_{w} = 0, 4$
Fator de utilização do primário	$K_{p} = 0,41$
Máxima densidade de corrente elétrica	$J_{(max)} = 350 \mathrm{A/cm^2}$
Máxima densidade de fluxo magnético	$\Delta B_{(max)} = 0,2\mathrm{T}$
Permeabilidade do vácuo	$\mu_o = 4.\pi . 10^{-7} \text{ H/m}$

TABELA 3.8 – PARÂMETROS DE PROJETO DO TRANSFORMADOR TR.

 $A_e \cdot A_w = \frac{833,33}{2 \cdot 25 \cdot 10^3 \cdot 1 \cdot 0, 41 \cdot 0, 4 \cdot 350 \cdot 0, 2} \cdot 10^4 = 14,518 \text{ cm}^4$

O núcleo de ferrite selecionado é o *EE-65/33/26-IP12* do fabricante *Thornton*, cujas características são apresentadas na tabela 3.9.

TABELA 3.9 – CARACTERÍSTICAS DO NÚCLEO EE-65/33/26 –	<i>IP12</i> .
--	---------------

Área seção transversal efetiva da perna central do núcleo	$A_e = 5,32 \text{ cm}^2$
Área efetiva da janela	$A_w = 3,70 \text{cm}^2$
Produto das áreas do núcleo e da janela	$A_w A_e = 19,684 \text{ cm}^4$
Comprimento médio de uma espira	MLT = 14,80 cm
Volume efetivo do núcleo	$V_e = 78,20 \text{cm}^3$

Cálculo do Número de Espiras

O número de espiras de cada primário L_{p1} e L_{p2} é determinado por (2.123).

$$N_{Lp1} = N_{Lp2} = \frac{\frac{400}{2 \cdot (1+2)}}{4 \cdot 0, 2 \cdot 5, 32 \cdot 25 \cdot 10^3} \cdot 10^4 = 6,27 \text{esp}$$

O número de espiras adotado para cada primário é igual a sete (7) espiras.

O número de espiras de cada secundário L_{sj} é determinado por (2.124).

$$N_{Ls1} = a_1 \cdot N_{Lp1} = 1 \cdot 7 = 7 \operatorname{esp}$$
$$N_{Ls2} = a_2 \cdot N_{Lp1} = 1 \cdot 7 = 7 \operatorname{esp}$$

CAPÍTULO III - Procedimento e Exemplo de Projeto.

Dimensionamento dos Condutores

O cálculo da área da seção transversal necessária para conduzir a corrente dos enrolamentos primários e secundários é determinado por (2.125) e (2.126).

$$S_{Lp1} = \frac{13,5}{350} = 38,56 \cdot 10^{-3} \text{ cm}^2$$
$$S_{Ls1} = S_{Ls2} = \frac{6,31}{350} = 18,03 \cdot 10^{-3} \text{ cm}^2$$

A profundidade de penetração da corrente Δ é determinada a partir de (2.110).

$$\Delta = \frac{7,5}{\sqrt{25000}} = 0,047 \text{ cm}$$

O diâmetro máximo do condutor $D_{cond(max)}$ é determinado a partir de (2.111).

$$D_{cond(max)} \le 2 \cdot 0,047 = 0,095$$
cm

O condutor escolhido para o projeto é o fio esmaltado 22 AWG que tem suas características descritas na tabela 3.5.

O número de condutores associados em paralelo para obter o valor da seção transversal do condutor escolhido é determinado por (2.127) e (2.128).

$$n_{cond_Lp1} = n_{cond_Lp2} = \frac{38,56 \cdot 10^{-3}}{3,255 \cdot 10^{-3}} = 11,85$$
condutores
 $n_{cond_Ls1} = n_{cond_Ls2} = \frac{18,03 \cdot 10^{-3}}{3,255 \cdot 10^{-3}} = 5,54$ condutores

O número de condutores em paralelo adotado para cada primário e secundário é igual a doze (12) e seis (6) condutores, respectivamente.

Verificação da Possibilidade de Execução

O fator de utilização da janela K_u é determinado por (2.129).

$$K_{u} = \frac{\left[7 \cdot 12 + 7 \cdot 12 + \left(7 \cdot 6 + 7 \cdot 6\right)\right] \cdot 4,013 \cdot 10^{-3}}{3,7} = 0,2733$$

Comparando-se o fator de utilização da janela K_u com fator de utilização da janela adotado K_w , observa-se que aquele é menor que este, portanto a montagem é possível.

A tabela 3.10 apresenta os resultados do projeto do transformador T_r .

Núcleo escolhido		<i>EE</i> – 65/33/26 – <i>IP</i> 12 (<i>Thornton</i>)
Número de espiras	Primário	$N_{Lp1} = N_{Lp2} = 7 \text{esp}$
	Secundário	$N_{Ls1} = N_{Ls2} = 7 \text{esp}$
Número de condutores	Primário	$n_{cond_Lp1} = n_{cond_Lp2} = 12$ condutores
em paralelo	Secundário	$n_{cond_Ls1} = n_{cond_Ls2} = 6$ condutores
Fio esmaltado		22 <i>AWG</i>

TABELA 3.10 – RESULTADOS DO PROJETO DO TRANSFORMADOR T_R .

Cálculo Térmico do Tranformador Tr

Cálculo da Perdas no Enrolamento

Nos primários a resistência do cobre é determinada por (2.130).

$$R_{cobre_primario(total)} = \frac{2,078 \cdot 10^{-6} \cdot 14,8}{0,3255} \cdot \left(\frac{7}{12} + \frac{7}{12}\right) = 11,02 \text{m}\Omega$$

Sendo a perda no cobre do primário determinada por (2.131).

$$P_{cobre\ primario} = 0,01102 \cdot 13,5^2 = 2,008 W$$

Nos secundários a resistência do cobre é determinada por (2.132).

$$R_{cobre_secundario(total)} = \frac{2,078 \cdot 10^{-6} \cdot 14,8}{0,3255} \cdot \left(\frac{7}{6} + \frac{7}{6}\right) = 22,05 \text{m}\Omega$$

Sendo a perda no cobre do secundário determinada por (2.133).

$$P_{cobre\ secundario} = 0,02205 \cdot 6,31^2 = 0,878W$$

Então a perda total no cobre do transformador Tr é determinada por (2.134).

$$P_{cobre} = 2,008 + 0,878 = 2,886 W$$

Cálculo da Perdas no Núcleo

As perdas no núcleo de ferrite são expressas por (2.135).

Onde os parâmetros mencionados em (2.135) são definidos conforme a Tabela 3.11.

Variação máxima da densidade de fluxo magnético no núcleo	$\Delta B_{\rm (max)}=0,2{\rm T}$
Coeficiente de perdas por histerese	$K_H = 4 \cdot 10^{-5}$
Coeficiente de perdas por correntes parasitas	$K_E = 4 \cdot 10^{-10}$
Frequência de operação do transformador T_r	$f_{Tr} = f$
Volume do núcleo	$V_e = 78,20 \text{cm}^3$

TABELA 3.11 – PARÂMETROS PARA O CÁLCULO DAS PERDAS NO NÚCLEO.

Portanto, substituindo os valores da Tabela 3.11 em (2.135) obtém-se:

$$P_{nucleo} = 0, 2^{2,4} \cdot \left[4 \cdot 10^{-5} \cdot 25 \cdot 10^3 + 4 \cdot 10^{-10} \cdot (25 \cdot 10^3)^2 \right] \cdot 78, 20 = 1,261 \text{W}$$

Perdas Totais

As perdas totais no transformador Tr, $P_{Tr(total)}$ são determinadas por (2.136).

 $P_{Tr(total)} = 2,886 + 1,261 = 4,147 \,\mathrm{W}$

Cálculo da Resistência Térmica do Núcleo

A resistência térmica do núcleo é determinada por (2.137).

$$R_{termica_nucleo} = 23 \cdot (19,684)^{-0.37} = 7,637 \, {^{\circ}C}/_{W}$$

Cálculo da Elevação de Temperatura

A elevação de temperatura é determinada por (2.138).

$$\Delta T_{Tr} = 7,637 \cdot 4,147 = 31,669^{\circ}C$$

3.3.4 DIMENSIONAMENTO DAS CHAVES $S_1 \in S_2$

Esforços de Tensão e Corrente

A tensão máxima sobre as chaves é obtida a partir de (2.57).

$$V_{S1(max)} = V_{S2(max)} = \frac{400}{(1+2)} = 133,33$$
V

A corrente média que circula através de cada chave é obtida a partir de (2.60).

$$I_{S1(med)} = I_{S2(med)} = \frac{2,5}{2} \cdot \frac{(0,685+2)}{(1-0,685)} = 10,66A$$

A corrente eficaz que circula através de cada chave é obtida a partir de (2.63).

$$I_{S1ef} = I_{S2ef} = \sqrt{\left[\frac{2,5^2}{4\cdot(0,315)^2} + \frac{(0,37)^2 \cdot 42^2 \cdot (40\cdot 10^{-6})^2}{192\cdot(60\cdot 10^{-6})^2 \cdot (3)^2}\right] \cdot \left[4,685 + (3-1,37)\cdot(2)^2\right]}$$

= 13,31A

A corrente máxima de pico repetitivo através de cada chave é obtida a partir de (2.64).

$$I_{S1(max)} = I_{S2(max)} = \left[\frac{2,5}{2\cdot(1-0,685)} + \frac{(2\cdot0,685-1)\cdot42\cdot40\cdot10^{-6}}{8\cdot60\cdot10^{-6}\cdot(1+2)}\right] \cdot \left[2\cdot(1+2)-1\right] = 22A$$

Dimensionamento do Dissipador

A perda em condução é determinada por (3.4).

$$P_{cond_S1} = P_{cond_S2} = R_{DS(on)} I_{S1ef}^{2}.$$
(3.4)

Substituindo os valores em (3.4), obtém-se:

$$P_{cond_S1} = P_{cond_S2} = 21 \cdot 10^{-3} \cdot 13, 31^2 = 3,72 \text{ W}$$

A perda na comutação é determinada por (3.5).

$$P_{com_{S1}} = P_{com_{S2}} = \frac{f}{2} \cdot (t_r + t_f) \cdot I_{S1ef} \cdot V_{S1}.$$
(3.5)

Substituindo os valores em (3.5), obtém-se:

$$P_{com_{S1}} = P_{com_{S2}} = \frac{25 \cdot 10^3}{2} \cdot \left(20 \cdot 10^{-9} + 31 \cdot 10^{-9}\right) \cdot 13, 31 \cdot 133, 33 = 1,13W$$

A perda total é determinada por (3.6).

$$P_{S1(total)} = P_{cond_S1} + P_{com_S1}.$$
 (3.6)

Substituindo os valores em (3.6), obtém-se:

$$P_{S1(total)} = 3,72 + 1,13 = 4,85$$
W

Adotando-se a temperatura ambiente, T_a , igual a 40°C e a temperatura de junção, T_j , igual a 100°C, a resistência térmica máxima entre o dissipador e o ambiente para a montagem de uma chave por dissipador é determinada por (3.7).

79

$$R_{\theta SA_S1} = \frac{T_J - T_a - P_{S1(total)} \cdot (R_{\theta JC} + R_{\theta CS})}{P_{S1(total)}}.$$
(3.7)

Substituindo os valores em (3.7), obtém-se:

$$R_{\theta SA_S1} = \frac{100 - 40 - 4,85 \cdot (0,45 + 0,5)}{4,85} = 11,42^{\circ} \text{ C/W}$$

A partir dos esforços de tensão e corrente calculados especificam-se as chaves. A chave escolhida é o transistor *HEXFET*[®] *Power MOSFET IRFP4227PbF* do fabricante *International Rectifier* com características apresentadas na tabela 3.12.

TABELA 3.12 – CARACTERÍSTICAS DO TRANSISTOR HEX	FET [®] Power MOSFET IRFP4227PbF.
Tensão máxima entre dreno e fonte	$V_{DS(\max)} = 200 \mathrm{V}$

Tensao maxima entre dieno e fonte	$V_{DS(\text{max})} = 200 \text{ V}$
Corrente máxima permanente de dreno $@T_c = 100^{\circ}C$	$I_D = 46 \mathrm{A}$
Corrente máxima de pico repetitivo $@T_C = 100^{\circ}C$	$I_{RP} = 130 \text{A}$
Dissipação máxima de potência @ $T_c = 100^{\circ}C$	$P_{D} = 190 \mathrm{W}$
Resistência estática entre dreno e fonte em estado de condução	$R_{DS(on)} = 21 \mathrm{m}\Omega$
Capacitância de entrada	$C_{iss} = 4.600 \mathrm{pF}$
Capacitância de saída	$C_{oss} = 460 \mathrm{pF}$
Capacitância reversa de transferência	$C_{rss} = 91 \mathrm{pF}$
Capacitância efetiva de saída efetiva	C_{oss} eff = 360pF
Temperatura de junção	$T_J = -40 \text{ a} + 175^{\circ} \text{C}$
Resistência térmica entre junção e encapsulamento	$R_{\theta JC} = 0,45^{\circ} \mathrm{C/W}$
Resistência térmica entre junção e ambiente	$R_{\theta JA} = 62^{\circ} \mathrm{C/W}$
Resistência térmica entre encapsulamento e dissipador	$R_{\theta CS} = 0,50^{\circ} \mathrm{C/W}$
Tempo de subida	$T_r = 20\eta s$
Tempo de descida	$T_f = 31\eta s$
Indutância interna do dreno	$L_D = 5\eta H$
Indutância interna da fonte	$L_s = 13\eta H$

3.3.5 DIMENSIONAMENTO DOS DIODOS $D_1 E D_2$

Esforços de Tensão e Corrente

A tensão reversa máxima sobre os diodos D_1 e D_2 é a mesma sobre o capacitor C_1 e é obtida a partir de (2.8), conforme apresentação nas tabelas 2.1 e 2.2.

$$V_{D1(max)} = V_{D2(max)} = V_{C1(max)} = 2 \cdot V_{Lp(max)} = \frac{48}{(1-0,64)} = 133,33$$
V

A corrente média que circula através dos diodos D_1 e D_2 é obtida a partir de (2.68).

$$I_{D1(med)} = I_{D2(med)} = \frac{2,5}{2} = 1,25$$
A

A corrente eficaz que circula através dos diodos D_1 e D_2 é obtida a partir de (2.70).

$$I_{D1ef} = I_{D2ef} = \sqrt{\frac{2.5^2}{4 \cdot (1 - 0.685)} + \frac{(1 - 0.685) \cdot (2 \cdot 0.685 - 1)^2 \cdot 42^2 \cdot (40 \cdot 10^{-6})^2}{192 \cdot (60 \cdot 10^{-6})^2 \cdot (1 + 2)^2}} = 2,23A$$

A corrente máxima de pico repetitivo através dos diodos D_1 e D_2 é obtida a partir de (2.71).

$$I_{D1(max)} = I_{D2(max)} = \frac{2.5}{2 \cdot (1 - 0.685)} + \frac{(2 \cdot 0.685 - 1) \cdot 42 \cdot 40 \cdot 10^{-6}}{8 \cdot 60 \cdot 10^{-6} \cdot (1 + 2)} = 4,40$$

Dimensionamento do Dissipador

Para o cálculo da perda por condução, o circuito equivalente do diodo apresentado na Fig.3.1.

Fig. 3.1 – Circuito equivalente do diodo.

Onde V_{FO} é a tensão no instante inicial de condução e V_F são obtidas pela análise da curva $V_F x I_F$ fornecida pelo fabricante. Admitindo-se temperatura da junção durante a condução do diodo de 125°C, obtêm-se os valores:

$$V_{F0} = 1$$
V e $V_F = 1,55$ V para $I_{F(AV)} = 15$ A

Então a resistência de condução R_{cond} média pode ser obtida por (3.8).

81

$$R_{cond} = \frac{V_F - V_{F0}}{I_{F(AV)}}.$$
(3.8)

Substituindo os valores em (3.8), obtém-se:

$$R_{cond} = \frac{1,55-1}{15} = 37 \cdot 10^{-3} \Omega$$

Assim o valor da perda em condução é determinado por (3.9)

$$P_{cond_D1} = P_{cond_D2} = V_{F0} \cdot I_{D1(med)} + R_{cond} \cdot I_{D1ef}^{2}.$$
(3.9)

Substituindo os valores em (3.9), obtém-se:

$$P_{cond_D1} = P_{cond_D2} = 1 \cdot 1,25 + 37 \cdot 10^{-3} \cdot 2,23^2 = 1,434$$
W

A perda na comutação é determinada por (3.10).

$$P_{com_{D1}} = P_{com_{D2}} = Q_{rr} \cdot V_{D1(max)} \cdot f.$$
(3.10)

Substituindo os valores em (3.10), obtém-se:

$$P_{com_{D1}} = P_{com_{D2}} = 220 \cdot 10^{-9} \cdot 133, 33 \cdot 25 \cdot 10^{3} = 0,733 \text{W}$$

A perda total é determinada por (3.11).

$$P_{D1(total)} = P_{D2(total)} = P_{cond_D1} + P_{com_D1}.$$
(3.11)

Substituindo os valores em (3.11), obtém-se:

$$P_{D1(total)} = P_{D2(total)} = 1,434 + 0,733 = 2,167$$
 W

Admitindo-se a temperatura ambiente T_a igual a 40°C e a T_J igual a 100°C, a resistência térmica máxima entre o dissipador e o ambiente para a montagem de dois diodos por dissipador é determinada por (3.12).

$$R_{\theta SA_para_D1 \ e \ D2} = \frac{T_J - T_a - P_{D1(total)} \cdot \left(R_{\theta JC} + R_{\theta CS}\right)}{2 \cdot P_{D1(total)}}.$$
(3.12)

Substituindo os valores em (3.12), obtém-se:

$$R_{\partial SA_para_D1 e D2} = \frac{100 - 40 - 2,167 \cdot (1,7+0,25)}{2 \cdot 2,167} = 12,87^{\circ} \text{ C/W}$$

A partir dos esforços de tensão e corrente calculados especificam-se os diodos D_1 e D_2 . O diodo especificado é o ultra-rápido *HFA15PB60* do fabricante *International Rectifier* com características apresentadas na tabela 3.13.

Tensão reversa máxima	$V_{RRM} = 600 \mathrm{V}$
Tensão entre anodo e catodo em condução direta	$V_F = 1,2$ V ($I_F = 15$ A, $T_j = 125$ °C)
Corrente média (máxima) de condução direta	$I_{F(AV)} = 15A (T_c = 100^{\circ}C)$
Corrente máxima de pico repetitivo de condução direta	$I_{FRM} = 60 \mathrm{A}$
Potência máxima de dissipação	$P_D = 29 \mathrm{W}$
Temperatura de junção	$T_J = -55 \text{ a} + 150^{\circ} \text{ C}$
Resistência térmica entre junção e ambiente	$R_{\theta JA} = 40^{\circ} \mathrm{C/W}$
Resistência térmica entre junção e encapsulamento	$R_{\theta JC} = 1,70^{\circ} \mathrm{C/W}$
Resistência térmica entre encapsulamento e dissipador	$R_{\theta CS} = 0,25^{\circ} \mathrm{C/W}$
Corrente de pico de recuperação reversa	$i_{RRM} = 6,5$ A
Carga de recuperação reversa	$Q_{rr} = 220\eta C$
Tempo de recuperação reversa $(I_F = 15A, V_R = 200V, \frac{di}{dt} = 200\frac{A}{\mu s}, T_J = 125^{\circ}C)$	$t_{rr} = 74 \eta s$

TABELA 3.13 - CARACTERÍSTICAS DO DIODO ULTRA-RÁPIDO HFA15PB60.

3.3.6 DIMENSIONAMENTO DOS DIODOS D_3 , D_4 , $D_5 \in D_6$

Para os cálculos seguintes, admite-se os valores para o enrolamento secundário *j* igual a 1 e 2, respectivamente.

Esforços de Tensão e Corrente

A tensão reversa máxima sobre os diodos D_3 , D_4 , D_5 e D_6 é a soma das tensões sobre os capacitores C_{2j} e C_{2j+1} é obtida por (3.13), conforme apresentação nas tabelas 2.1 e 2.2.

$$V_{D_{2,j+1}(max)} = V_{D_{2,j+2}(max)} = V_{C_{2,j}(max)} + V_{C_{2,j+1}(max)} = \frac{2 \cdot a_j \cdot V_{C_1(max)}}{2}.$$
(3.13)

Obtêm-se:

$$V_{D_3(max)} = V_{D_4(max)} = V_{C_2(max)} + V_{C_3(max)} = \frac{2 \cdot 1 \cdot 133, 33}{2} = 133, 33V$$
$$V_{D_5(max)} = V_{D_6(max)} = V_{C_4(max)} + V_{C_5(max)} = \frac{2 \cdot 1 \cdot 133, 33}{2} = 133, 33V$$
A corrente média que circula através dos diodos D_3 , D_4 , D_5 e D_6 é obtida a partir de (2.75).

$$I_{D_{2j+1}(med)} = I_{D_{2j+2}(med)} = 2,5A$$

Obtém-se:

$$I_{D_3(med)} = I_{D_4(med)} = I_{D_5(med)} = I_{D_6(med)} = 2,5A$$

A corrente eficaz que circula através dos diodos D_3 , D_4 , D_5 e D_6 é obtida a partir de (2.77).

$$I_{D_{2,j+1}ef} = I_{D_{2,j+2}ef} = \sqrt{\frac{2,5^2}{(1-0,685)} + \frac{(1-0,685)\cdot(2\cdot0,685-1)^2\cdot42^2\cdot(40.10^{-6})^2}{48\cdot(60.10^{-6})^2\cdot(1+2)^2}} = 4,46A$$

Obtém-se:

$$I_{D_3ef} = I_{D_4ef} = I_{D_5ef} = I_{D_6ef} = 4,46$$
A

A corrente máxima de pico repetitivo através dos diodos D_3 , D_4 , D_5 e D_6 é obtida a partir de (2.78).

$$I_{D_{2j+1}(max)} = I_{D_{2j+2}(max)} = \frac{2,5}{(1-0,685)} + \frac{(2\cdot0,685-1)\cdot42\cdot40\cdot10^{-6}}{4\cdot60\cdot10^{-6}\cdot(1+2)} = 8,80A$$

Obtém-se:

$$I_{D_3(max)} = I_{D_4(max)} = I_{D_5(max)} = I_{D_6(max)} = 8,80$$
A

A partir dos esforços de tensão e corrente calculados especificam-se os diodos D_3 , D_4 , D_5 e D_6 . O diodo especificado é o mesmo adotado para D_1 e D_2 - ultra-rápido *HFA15PB60* do fabricante *International Rectifier* com características apresentadas na tabela 3.13.

Dimensionamento do Dissipador

O valor da perda em condução é determinado por (3.14).

$$P_{cond_D_{2j+1}} = P_{cond_D_{2j+2}} = V_{F0} \cdot I_{D_{2j+1}(med)} + R_{cond} \cdot I_{D_{2j+1}ef}^{2}.$$
(3.14)

Substituindo os valores em (3.14), obtém-se:

$$P_{cond_D_3} = P_{cond_D_4} = P_{cond_D_5} = P_{cond_D_6} = 1 \cdot 2, 5 + 37 \cdot 10^{-3} \cdot 4, 46^2 = 3,236 \text{W}$$

A perda na comutação é igual a dos diodos D_1 e D_2 .

```
A perda total é determinada por (3.15).
```

$$P_{D_{2j+1}(total)} = P_{D_{2j+2}(total)} = P_{cond_{D_{2j+1}}} + P_{com_{D_{2j+1}}}.$$
(3.15)

84

Substituindo os valores em (3.15), obtém-se:

$$P_{D_3(total)} = P_{D_4(total)} = P_{D_5(total)} = P_{D_6(total)} = 3,236 + 0,733 = 3,969$$
 W

Admitindo-se a temperatura ambiente T_a igual a 40°C e a T_j igual a 100°C, a resistência térmica máxima entre o dissipador e o ambiente para a montagem de dois diodos por dissipador é determinada por (3.16).

$$R_{\theta SA_para_{D_{2j}} e D_{2j+1}} = \frac{T_J - T_a - P_{D_{2j+1}(total)} \cdot (R_{\theta JC} + R_{\theta CS})}{2 \cdot P_{D_{2j+1}(total)}}.$$
(3.16)

Substituindo os valores em (3.16), obtém-se:

$$R_{\theta SA_para_D_{2j} \ e \ D_{2j+1}} = \frac{100 - 40 - 3,969 \cdot (1,7+0,25)}{2 \cdot 3,969} = 6,58^{\circ} \text{C/W}$$

3.3.7 DIMENSIONAMENTO DO CAPACITOR C_1

Esforços de Tensão e Corrente

A máxima tensão sobre o capacitor C_I é obtida a partir de (2.8).

$$V_{C1(max)} = 2 \cdot V_{Lp(max)} = \frac{42}{(1-0,685)} = 133,33$$
V

A corrente eficaz que circula através de C_l é obtida a partir de (2.82).

$$I_{Clef} = \sqrt{\frac{\left(2 \cdot 0,685 - 1\right) \cdot 2,5^{2}}{2 \cdot \left(1 - 0,685\right)} + \frac{\left(1 - 0,685\right) \cdot \left(2 \cdot 0,685 - 1\right)^{2} \cdot 42^{2} \cdot \left(40 \cdot 10^{-6}\right)^{2}}{96 \cdot \left(60 \cdot 10^{-6}\right)^{2} \cdot \left(1 + 2\right)^{2}}} = 1,57A$$

A ondulação da corrente de C_I é definida a partir de (2.84).

$$\Delta I_{C1} = \frac{2,5}{2 \cdot (1-0,685)} + \frac{(2 \cdot 0,685 - 1) \cdot 42 \cdot 40 \cdot 10^{-6}}{8 \cdot 60 \cdot 10^{-6} \cdot (1+2)} \cdot \left(1 - \frac{2 \cdot 0,685 - 1}{1-0,685}\right) = 3,89A$$

Valor da Capacitância

O valor da capacitância de C_l é calculado a partir de (2.23).

$$C_1 \ge \frac{(2 \cdot 0,685 - 1) \cdot (1 - 0,685) \cdot 1000 \cdot 40 \cdot 10^{-6}}{2 \cdot 4 \cdot 42 \cdot (1 + 2)} = 4,625 \mu F$$

Cálculo da Resistência Série Equivalente

A resposta dinâmica da malha de tensão e as variações de carga dependem da resistência série equivalente. Para garantir a estabilidade do conversor esta deve possuir valor determinado por (3.17).

$$RSE_{C1} \le \frac{\Delta V_{c1}}{\Delta I_{c1}}.$$
(3.17)

Adotando como ondulação máxima de tensão sobre o capacitor C_1 igual à ondulação da tensão sobre o barramento *CC* e substituindo os valores em (3.17), obtém-se:

$$RSE_{C1} \le \frac{4}{5,12} = 781 \mathrm{m}\Omega$$

Com o intuito de diminuir os esforços de corrente e tensão, adotou-se dois capacitores em paralelo com referência B32614 - A3225 - K008 do fabricante *Epcos* e especificações descritas na tabela 3.14.

Tipo	Polipropileno metalizado
Capacitância	$C_1 = 2, 2\mu F$
Tensão máxima	$V_{Cl_{cc}} = 250 \mathrm{V} / V_{Cl_{ef}} = 160 \mathrm{V}$
Referência do capacitor adotado (Epcos)	B32614 - A3225 - K008

TABELA 3.14	4 – ESPECIFICA	ÇÃO DO CAP	ACITOR C_l .
-------------	----------------	------------	----------------

3.3.8 DIMENSIONAMENTO DOS CAPACITORES $C_2, C_3, C_4 \in C_5$

Para os cálculos seguintes, admite-se os valores para o enrolamento secundário *j* igual a 1 e 2, respectivamente.

Esforços de Tensão e Corrente

A máxima tensão sobre os capacitores é obtida a partir de (2.9).

$$V_{C_{2,j}(max)} = V_{C_{2,j+1}(max)} = \frac{1.133,33}{2} = 66,67$$
 V

Então:

$$V_{C_2(max)} = V_{C_3(max)} = V_{C_4(max)} = V_{C_5(max)} = 66,67$$
V

A corrente eficaz que circula através dos capacitores é obtida a partir de (2.88).

$$I_{C_{2j}ef} = I_{C_{2j+1}ef} = \sqrt{\left(\frac{1}{(1-0,685)} - 1\right) \cdot 2,5^2 + \frac{(1-0,685) \cdot (2 \cdot 0,685 - 1)^2 \cdot 42^2 \cdot (40.10^{-6})^2}{48 \cdot (60 \cdot 10^{-6})^2 \cdot (1+2)^2}} = 3,70\text{A}$$

Assim:

$$I_{C_{2ef}} = I_{C_{3ef}} = I_{C_{4ef}} = I_{C_{5ef}} = 3,70$$
A

A ondulação da corrente dos capacitores é definida a partir de (2.90).

$$\Delta I_{C_{2j}} = \Delta I_{C_{2j+1}} = \frac{2,5}{(1-0,685)} + \frac{(2\cdot0,685-1)\cdot42\cdot40\cdot10^{-6}}{4\cdot60\cdot10^{-6}\cdot(1+2)} \cdot \left(1 - \frac{2\cdot0,685-1}{1-0,685}\right) = 7,79A$$

Então:

$$\Delta I_{C_2} = \Delta I_{C_3} = \Delta I_{C_4} = \Delta I_{C_5} = 7,79$$
A

Valor da Capacitância

O valor da capacitância dos capacitores é calculado a partir de (2.27).

$$C_{2j} = C_{2j+1} \ge \frac{0,685 \cdot (1-0,685) \cdot 1000 \cdot 40 \cdot 10^{-6}}{4 \cdot 42 \cdot (1+2)} = 17,13 \mu F$$

Então:

$$C_2 = C_3 = C_4 = C_5 \ge 17,13 \mu F$$

Cálculo da Resistência Série Equivalente

A resistência série equivalente é determinada por (3.18).

$$RSE_{C_{2j}} = RSE_{C_{2j+1}} \le \frac{\Delta V_{c1}}{\Delta I_{c_{2j}}}.$$
(3.18)

Adotando como ondulação máxima de tensão sobre os capacitores C_2 , C_3 , C_4 e C_5 igual à ondulação da tensão sobre o barramento *CC* e substituindo os valores em (3.18), obtém-se:

$$RSE_{C1} \le \frac{4}{7,79} = 514 \mathrm{m}\Omega$$

Adotando o mesmo critério para especificação de C_1 especificam-se os capacitores C_2 , C_3 , C_4 e C_5 .

3.3.9 DIMENSIONAMENTO DO CAPACITOR DE SAÍDA Co

Cálculo da Capacitância e Esforços de Tensão e Corrente

O valor da capacitância do barramento CC, C_o , é obtido a partir de (2.100).

Onde $t_h = 8,33 \text{ms}$, $V_{C_o(max)} = 400 \text{V}$ e $V_{C_o(min)} = 360 \text{V}$

Substituindo-se os valores em (2.100), obtém-se:

$$C_o = \frac{2 \cdot 8,33 \cdot 10^{-3} \cdot 1000}{\left(400^2 - 360^2\right)} = 548,02\mu\text{F}$$

A corrente eficaz drenada pela carga alimentada pelo capacitor é determinada por (2.102).

$$I_{C_{o}_{-}ef} = 6,94 \cdot \sqrt{\frac{3.10^{-3}}{8,33.10^{-3}}} = 4,165$$
A

Com o intuito de diminuir os esforços de corrente e de tensão e o *RSE*, adotou-se quatro capacitores *B*43601-*A*9477-*M*000 do fabricante *Epcos*, com especificações descritas na tabela 3.15. Dois estão em paralelo e com a polaridade positiva conectada ao ponto comum entre D_6 e C_5 e polaridade negativa conectada ao ponto comum entre C_3 e C_2 , os outros dois, também em paralelo, com polaridade positiva conectada neste mesmo ponto e polaridade negativa conectada ao negativo da fonte de entrada, V_{bat} .

TABELA 3.15 –	ESPECIFICAÇÃO DO CAPACITOR	C_{o}
---------------	----------------------------	---------

Tipo de capacitor	Eletrolítico
Valor da capacitância de cada capacitor	$C_o = 470 \mu F$
Tensão máxima	$V_{C_o_CC} = 450 \mathrm{V}$
Corrente eficaz	$I_{C_{o}_{ef}} = 4,58 \text{A} @ 60^{\circ} \text{C}$
Resistência série equivalente (100Hz a 20 °C)	$RSE_{C_o} = 230 \mathrm{m}\Omega$
Referência do capacitor adotado (Epcos)	B43601 - A9477 - M000

87

3.4 CONSIDERAÇÕES FINAIS

Neste capítulo foi realizado o projeto do conversor proposto com base na análise teórica. Apenas o projeto do estágio de potência é apresentado neste capítulo, ficando para o próximo capítulo o projeto do estágio de controle para facilitar o entendimento.

Verificou-se que a potência ativa processada pelo transformador calculada é aproximadamente 84% da potência de saída e que a tensão sobre as chaves é um terço da tensão de saída, devido ao grampeamento promovido pelo capacitor de saída C_I . O capacitor de filtro de saída C_o foi especificado a partir da energia que deve fornecer durante *hold-up time*, adotou-se capacitores em paralelo para reduzir a *RSE*. O esquema completo do circuito projetado está incluído no Apêndice.

CAPÍTULO IV

MODELAGEM E PROJETO DO CIRCUITO DE CONTROLE

4.1 CONSIDERAÇÕES INICIAIS

Neste capítulo serão apresentados: procedimento para obtenção do circuito equivalente, modelagem dinâmica do novo conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo, metodologia de controle modo corrente média e o projeto completo do circuito de controle.

O conversor proposto neste trabalho pode ser visto pelo controlador como um circuito equivalente ao do conversor *boost* convencional, desde que opere com o dobro da frequência e tenha seu lado secundário referido ao lado primário, possibilitando o estudo com maior simplicidade do comportamento em regime permanente e dinâmico.

O conversor equivalente será modelado matematicamente objetivando-se determinar sua função de transferência para possibilitar o projeto do circuito de controle de tensão e corrente.

4.2 PROCEDIMENTO PARA OBTENÇÃO DO CIRCUITO EQUIVALENTE DO CONVERSOR

O procedimento necessário para obtenção do circuito equivalente a partir do circuito do conversor proposto é descrito a seguir.

Primeiro passo:

A resistência do barramento *CC*, R_{bar} , é dividida de forma que cada parte conduza o mesmo valor da corrente de carga, considerando a tensão que lhe é aplicada. Distribui-se, de forma equivalente, a capacitância e a *RSE* do capacitor C_o . A Fig. 4.1. mostra o circuito resultante do primeiro passo. Os valores das resistências carga distribuídas são determinadas por (4.1) e (4.2).

$$R_{bar1} = \frac{R_{bar}}{3}.\tag{4.1}$$

$$R_{bar2} = R_{bar3} = R_{bar4} = R_{bar5} = \frac{R_{bar}}{6}.$$
(4.2)

Fig. $4.1 - 1^{\circ}$ passo.

Segundo passo:

São determinadas as capacitâncias e resistências séries equivalentes.

Considerando que os capacitores: C_2 , C_3 , $C_4 \in C_5$ tenham valores iguais a $C \in C_{o1} \in C_{o2}$ a C_o , as capacitâncias equivalentes podem ser determinadas por (4.3) e (4.4). Considerando que as resistências séries equivalentes R_{se2} , R_{se3} , $R_{se4} \in R_{se5}$ tenham valores iguais a $R_{se} \in R_{seo1} \in R_{seo2}$ iguais a R_{seo} , as resistências equivalentes podem ser determinadas por (4.5) e (4.6). A Fig. 4.2 mostra o circuito resultante do segundo passo.

$$C_{2_{eq}} = C_{3_{eq}} = C_{4_{eq}} = C_{5_{eq}} = C + 3.C_o.$$
(4.3)

$$C_{1_{eq}} = C + \frac{3}{2} \cdot C_o.$$
(4.4)

$$R_{se2_eq} = R_{se3_eq} = R_{se4_eq} = R_{se5_eq} = \frac{R_{se} \cdot \left(\frac{R_{seo}}{3}\right)}{R_{se} + \left(\frac{R_{seo}}{3}\right)}.$$
(4.5)

Fig. 4.2 – 2° passo.

Terceiro passo:

 C_{1_eq1} , R_{se1_eq} e R_{bar} são distribuídas da forma apresentada na Fig. 4.3.

Fig. 4.3 – 3° *passo.*

Sendo $C_{1_{eq1}}$ e $C_{1_{eq2}}$ determinadas por (4.7).

$$C_{1_eq1} = C_{1_eq2} = 2.C_{1_eq}.$$
(4.7)

Substituindo (4.4) em (4.7), obtém-se (4.8).

$$C_{1_eq1} = C_{1_eq2} = 2.\left(C + \frac{3}{2}.C_o\right).$$
(4.8)

 $R_{sel_{eq1}}$ e $R_{sel_{eq2}}$ são determinadas por (4.9).

$$R_{se1_eq1} = R_{se1_eq2} = \frac{R_{se1_eq}}{2}.$$
(4.9)

Substituindo (4.6) em (4.9), obtém-se (4.10).

$$R_{se1_eq1} = R_{se1_eq2} = \frac{\frac{R_{se} \cdot \left(\frac{2}{3} \cdot R_{seo}\right)}{R_{se} + \left(\frac{2}{3} \cdot R_{seo}\right)}}{2}.$$
(4.10)

 $R_{bar1_{eq1}}$ e $R_{bar1_{eq2}}$ são determinadas por (4.11).

$$R_{bar1_eq1} = R_{bar1_eq2} = \frac{R_{bar1}}{2}.$$
(4.11)

Substituindo (4.1) em (4.11), obtém-se (4.12).

$$R_{bar1_eq1} = R_{bar1_eq2} = \frac{R_{bar}}{6}.$$
(4.12)

E as tensões V_2 , V_3 , V_4 e V_5 são determinadas por (4.13) e (4.14), respectivamente.

$$V_2 = V_3 = a_1 \cdot V_{Lp1} \tag{4.13}$$

$$V_4 = V_5 = a_2 V_{Lp2} \tag{4.14}$$

Quarto passo:

Os circuitos formados pelas tensões aplicadas V_2 , V_3 , V_4 e V_5 são separados nas etapas de funcionamento correspondente. A Fig. 4.4 mostra o circuito equivalente do quarto passo.

Quinto passo:

Todos os circuitos independentes são referidos ao primário. A Fig. 4.5 mostra o circuito equivalente deste passo.

Fig. 4.4 – 4° passo.

Fig. 4.5 – 5° passo.

Os valores das resistências série equivalentes referidas ao primário são determinadas por (4.15).

$$R_{se2P} = R_{se3P} = \frac{\frac{R_{se} \cdot \left(\frac{R_{seo}}{3}\right)}{R_{se} + \left(\frac{R_{seo}}{3}\right)}}{a_1^2},$$

$$\frac{R_{se2P} - R_{se3P} - \frac{R_{se} \cdot \left(\frac{R_{seo}}{3}\right)}{a_2^2}}{R_{se4P} - R_{se5P} - \frac{R_{se} + \left(\frac{R_{seo}}{3}\right)}{a_2^2}}{a_2^2}.$$
(4.15)

As capacitâncias referidas ao primário são determinadas por (4.16).

$$C_{2P} = C_{3P} = a_1^2 \cdot (C + 3.C_o),$$

$$C_{4P} = C_{5P} = a_2^2 \cdot (C + 3.C_o).$$
(4.16)

As resistências e as tensões do barramento referidas ao primário são determinadas por (4.17) e (4.18), respectivamente.

$$R_{bar2p} = R_{bar3p} = \frac{R_{bar}}{6.a_{1}^{2}},$$
(4.17)

$$R_{bar4p} = R_{bar5p} = \frac{R_{bar}}{6.a_{2}^{2}}.$$

$$V_{bar1_{1}} = V_{bar1_{2}} = V_{Lp1} + V_{Lp2},$$

$$V_{bar2p} = V_{2p} + V_{Lp2},$$

$$V_{bar3p} = V_{3p} + V_{Lp1},$$

$$V_{bar4p} = V_{4p} + V_{Lp2},$$

$$V_{bar5p} = V_{5p} + V_{Lp1}.$$

E as tensões sobre os enrolamentos secundários são determinadas por (4.19).

$$V_{2p} = V_{3p} = \frac{V_3}{a_1} = \frac{a_1 \cdot V_{Lp1}}{a_1} = V_{Lp1},$$

$$V_{4p} = V_{5p} = \frac{V_5}{a_2} = \frac{a_2 \cdot V_{Lp2}}{a_2} = V_{Lp2}.$$
(4.19)

Sexto passo:

Obtém-se o circuito equivalente de cada braço do primário do transformador. A Fig. 4.6 mostra o circuito do sexto passo.

Fig. $4.6 - 6^{\circ}$ passo.

As capacitâncias e as resistências série equivalentes dos capacitores são determinadas por (4.20) e (4.21), respectivamente.

$$R_{se_{1}_total} = R_{se_{2}_total} = \frac{R_{se}R_{seo}}{R_{se}(3+3.a_{1}^{2}+3.a_{2}^{2}) + R_{seo}(2+a_{1}^{2}+a_{2}^{2})}.$$

$$C_{1_1_total} = C_{1_eq1} + C_{2P} + C_{4P},$$

$$C_{1_2_total} = C_{1_eq2} + C_{3P} + C_{5P}.$$
(4.20)
$$(4.21)$$

Substituindo (4.8) e (4.16) em (4.21), obtém-se (4.22).

$$C_{1_{1_{total}}} = 2 \cdot \left(C + \frac{3}{2} \cdot C_{o} \right) + \left(C + 3 \cdot C_{o} \right) \cdot \left(a_{1}^{2} + a_{2}^{2} \right),$$

$$C_{1_{2_{total}}} = 2 \cdot \left(C + \frac{3}{2} \cdot C_{o} \right) + \left(C + 3 \cdot C_{o} \right) \cdot \left(a_{1}^{2} + a_{2}^{2} \right).$$
(4.22)

As resistências de cada braço são determinadas por (4.23)

$$R_{bar_{1_{total}}} = R_{bar_{2_{total}}} = \frac{R_{bar}}{6} \cdot \left(\frac{1}{1 + a_{1}^{2} + a_{2}^{2}}\right).$$
(4.23)

Sétimo passo:

Obtém-se o circuito equivalente que corresponde ao circuito do conversor *boost* convencional. A Fig. 4.7 mostra o circuito equivalente do sétimo passo.

Fig. 4.7 – 7° passo (circuito equivalente).

Os valores do circuito equivalente: razão cíclica D_{eq} , freqüência f_{eq} , resistência série equivalente R_{se_p} e capacitância C_{eq_p} , resistência de saída R_{bar_p} e da tensão de saída referidas ao primário são determinadas por (4.24), (4.25), (4.26), (4.27), (4.28) e (4.29), respectivamente.

$$D_{eq} = 2.D_n - 1. (4.24)$$

$$f_{eq} = 2.f.$$
 (4.25)

$$R_{se_{p}} = \frac{R_{se} \cdot R_{seo}}{R_{se} \cdot (6 + 6.a_{1}^{2} + 6.a_{2}^{2}) + R_{seo} \cdot (4 + 2.a_{1}^{2} + 2.a_{2}^{2})}.$$
(4.26)

$$C_{eq_p} = \left(6 + 6.a_1^2 + 6.a_2^2\right) \cdot C_o + \left(4 + 2.a_1^2 + 2.a_2^2\right) \cdot C.$$
(4.27)

$$R_{bar_{p}} = \frac{R_{bar}}{12} \cdot \left(\frac{1}{1+a_{1}^{2}+a_{2}^{2}}\right).$$
(4.28)

$$V_{bar_{P}} = \frac{V_{Lp1} + V_{Lp2}}{n_{autotrafo}}.$$
 (4.29)

Onde:

 $n_{autotrafo}$: relação de transformação do autotransformador.

4.3 MODELAGEM DINÂMICA

Os modelos CC e CA são aplicados ao conversor com o intuito de determinar os ganhos estáticos em regime permanente e as funções de transferências envolvendo os parâmetros a serem controlados para realizar o estudo dinâmico do conversor. O modelo CA, modelo de pequenos sinais, prever como as variações de baixa frequência na razão cíclica afetam a saída (variável a ser controlada), ignora ondulações e harmônicos produzidos pela comutação das chaves e é utilizado para determinar parâmetros no comportamento dinâmico – função de transferência. E o modelo CC, modelo em estado permanente, é utilizado para determinar os parâmetros em regime permanente do conversor – ganho estático.

Existem vários métodos de modelagem de conversores estáticos na literatura, sendo os principais: Modelamento *CA* Básico Aproximado (*The Basic AC Modeling Approach*), Modelo Médio de Espaços de Estado (*State-Space Averaging Model*), Modelo do Circuito Canônico (*Canonical Circuit Model*), Modelo da Chave Média (*Averaged Switch Model*) e Modelo da Chave *PWM* de Vorpérian (*Model of PWM Switch – Vorpérian*) [51].

O método de modelagem adotado neste trabalho é o Modelo da Chave *PWM* de *Vorpérian* [29].

4.3.1 ANÁLISE APLICANDO O MODELO CC DA CHAVE PWM

Analisando o modelo e considerando que a razão cíclica é constante (d = 0), isto é, em regime permanente, os indutores são representados apenas por suas resistências; os capacitores estão abertos; a tensão de entrada é constante e r_e é igual a zero. A Fig. 4.8 mostra o conversor *boost* com indicação dos terminais ativo (*a*), passivo (*p*) e comum (*c*), a Fig. 4.9 mostra o circuito equivalente do conversor *boost* incorporando o modelo *CC* e a Fig. 4.10 mostra o circuito equivalente em regime permanente.

Fig. 4.8 – Conversor boost com indicação dos terminais ativo (a), passivo (p) e comum (c).

Fig. 4.9 – Circuito equivalente do conversor boost incorporando o modelo CC.

Fig.4.10 – Circuito equivalente do conversor boost em regime permanente.

O ganho estático do conversor boost é determinado por (4.30).

$$\frac{V_{bar_{p}}}{V_{bat}} = \frac{1}{D' \cdot \left(1 + \frac{D.r_{e}}{R_{bar_{p}} \cdot D'} + \frac{R_{L1}}{R_{bar_{p}} \cdot D'^{2}}\right)}.$$
(4.30)

4.3.2 ANÁLISE APLICANDO O MODELO DE PEQUENOS SINAIS DA CHAVE *PWM* (MODELO CA)

As principais funções de transferência utilizadas para controlar as variáveis de corrente e tensão são obtidas aplicando-se o modelo *CA* da chave *PWM* no conversor.

Função de transferência da tensão de saída perturbando a tensão de entrada

A função de transferência $\frac{\hat{v}_{bar_p}}{\hat{v}_{bat}}$ é obtida considerando-se a razão cíclica constante

 $(\hat{d} = 0)$ e que a tensão de entrada sofra pequenas perturbações. E é determinada por (4.31).

$$\left(\frac{\hat{v}_{bar_{p}}}{\hat{v}_{bat}}\right)_{\hat{d}=0} = \frac{\frac{1}{A1} \cdot \left(\frac{s}{A2} + 1\right)}{\frac{s^{2}}{B1} + \frac{s}{B2} + 1}.$$
(4.31)

Onde:

$$A1 = D' \cdot \left(1 + \frac{D \cdot r_e}{R_{bar_P} \cdot D'} + \frac{R_{L1}}{R_{bar_P} \cdot D'^2} \right),$$

$$A2 = \frac{1}{R_{se_P} \cdot C_{eq_P}},$$

$$B1 = \frac{D \cdot D' \cdot r_e + D'^2 \cdot R_{bar_P} + R_{L1}}{L_1 \cdot C_{eq_P} \cdot (R_{bar_P} + R_{se_P})},$$

$$B2 = \frac{D \cdot D' \cdot r_e + D'^2 \cdot R_{bar_P} + R_{se_P}}{D' \cdot r_e \cdot C_{eq_P} \cdot (R_{bar_P} + R_{se_P}) + R_{L1} \cdot C_{eq_P} \cdot (R_{bar_P} + R_{se_P}) + L_1}.$$

 $Z_{(s)}$ e r_e são determinadas por (4.32) e por (4.33).

$$Z_{(s)} = \frac{R_{bar_{P}}(s.R_{se_{P}}.C_{eq_{P}}+1)}{s.R_{bar_{P}}.C_{eq_{P}}+s.R_{se_{P}}.C_{eq_{P}}+1}.$$
(4.32)

$$r_{e} = \frac{R_{se_{p}} \cdot R_{bar_{P}}}{R_{se_{p}} + R_{bar_{P}}}.$$
(4.33)

Substituindo (4.32) e (4.33) em (4.31), obtém-se (4.34).

$$\left(\frac{\hat{v}_{bar_p}}{\hat{v}_{bat}}\right)_{\hat{d}=0} = \frac{Z_{(s)}.D'}{D'^2.Z_{(s)} + D.D'.r_e + R_{L1} + s.L_1}.$$
(4.34)

A Fig. 4.11 mostra o circuito equivalente.

Fig. 4.11 – Circuito equivalente do conversor boost com modelo CA com razão cíclica constante ($\hat{d} = 0$).

Função de transferência da tensão de saída perturbando a razão cíclica

A função de transferência $\frac{\hat{v}_{bar_p}}{\hat{d}}$ é obtida considerando-se a tensão de entrada constante

($\hat{v}_{bat} = 0$) e que a razão cíclica sofra pequenas perturbações. E é determinada por (4.35).

$$\left(\frac{\hat{v}_{bar_{p}}}{\hat{d}}\right)_{\hat{v}_{bar}=0} = \frac{\left(A1\right) \cdot \left(\frac{-s}{A2} + 1\right) \cdot \left(\frac{s}{A3} + 1\right)}{\frac{s^{2}}{B1} + \frac{s}{B2} + 1}.$$
(4.35)

Onde:

$$A1 = \frac{-R_{L1}.V_{bar_p} - V_D.D'^2.R_{bar_p} - D.D'.r_e.V_{bar_p}}{D.D'^2.r_e + D'^3.R_{bar_p} + R_{L1}.D'},$$
$$A2 = \frac{-R_{L1}.V_{bar_p} - V_D.D'^2.R_{bar_p} - D.D'.r_e.V_{bar_p}}{L_1.V_{bar_p}},$$

$$A3 = \frac{1}{R_{se_{p}}.C_{eq_{p}}},$$

$$B1 = \frac{D.D'.r_{e} + D'^{2}.R_{bar_{p}} + R_{L1}}{L_{1}.C_{eq_{p}}.(R_{bar_{p}} + R_{se_{p}})},$$

$$B2 = \frac{D.D'.r_{e} + D'^{2}.R_{bar_{p}} + R_{L1}}{D'.r_{e}.C_{eq_{p}}.(R_{bar_{p}} + R_{se_{p}}) + R_{L1}.C_{eq_{p}}.(R_{bar_{p}} + R_{se_{p}}) + L_{1}}$$

 V_D é determinada por (4.36).

$$V_{D} = -V_{bar_{p}} \cdot \left[\frac{r_{e}}{D' \cdot R_{bar_{p}}} \cdot (D - D') + 1 \right].$$
(4.36)

Substituindo-se (4.32), (4.33) e (4.36) em (4.35), obtém-se (4.37).

$$\left(\frac{\hat{v}_{bar_p}}{\hat{d}}\right)_{\hat{v}_{bar}=0} = \frac{-R_{L1}.V_{bar_p} - V_D.D'^2.R_{bar_P} - D.D'.r_e.V_{bar_p} - s.L_1.V_{bar_p}}{D'^3.R_{bar_P} + \left(\frac{D.D'^2.r_e.R_{bar_P} + D'.R_{L1}.R_{bar_P} + s.D'.L_1.R_{bar_P}}{Z_{(s)}}\right)}.$$
 (4.37)

A Fig. 4.12 mostra o circuito equivalente.

Fig. 4.12 – Circuito equivalente do conversor boost com modelo CA com tensão de entrada constante ($\hat{v}_{bat} = 0$).

Função de transferência da corrente no indutor perturbando a razão cíclica

A função de transferência $G_i(s) = \left(\frac{\hat{i}_{L1}}{\hat{d}}\right)_{\hat{v}_{bai}=0}$ é obtida considerando-se a tensão de

entrada constante ($\hat{v}_{bat} = 0$) e que a razão cíclica sofra pequenas perturbações. E é determinada por (4.38).

$$G_{i}(s) = \frac{A1 \cdot \left[\frac{s}{A2} + 1\right]}{\frac{s^{2}}{B1} + \frac{s}{B2} + 1}.$$
(4.38)

Onde:

$$A1 = \frac{-(V_D + I_C . D' . R_{bar_P})}{D.D' . r_e + D'^2 . R_{bar_P} + R_{L1}},$$

$$A2 = \frac{V_D + I_C . D' . R_{bar_P}}{(V_D . R_{bar_P} . C_{eq_P} + V_D . R_{se_P} . C_{eq_P} + I_C . D' . R_{bar_P} . R_{se_P} . C_{eq_P})},$$

$$B1 = \frac{D.D' . r_e + D'^2 . R_{bar_P} + R_{L1}}{I_1 . C_{eq_P} . (R_{bar_P} + R_{se_P})},$$

$$B2 = \frac{D.D' . r_e + D'^2 . R_{bar_P} + R_{se_P}}{D.D' . r_e . C_{eq_P} . (R_{bar_P} + R_{se_P}) + R_{se_P} . C_{eq_P} . (D'^2 . R_{bar_P} + R_{L1}) + L_1 + R_{L1} . R_{bar_P} . C_{eq_P}}$$

 I_C é determinada por (4.39).

$$I_{C} = \frac{-V_{bar_{p}}}{D'.R_{bar_{P}}}.$$
(4.39)

Substituindo-se (4.32), (4.33), (4.36) e (4.39) em (4.38), obtém-se (4.40).

$$G_{i}(s) = \left(\frac{\hat{i}_{L1}}{\hat{d}}\right)_{\hat{v}_{bat}=0} = \frac{V_{D} + D'.I_{C}.Z_{(s)}}{D.D'.r_{e} + D'^{2}.Z_{(s)} + R_{L1} + s.L_{1}}.$$
(4.40)

A Fig. 4.12 mostra o circuito equivalente.

Função de transferência da tensão de saída perturbando a corrente no indutor

A função de transferência $Z_{v}(s) = \left(\frac{\hat{v}_{bar_{-}p}}{\hat{i}_{L1}}\right)_{\hat{v}_{bat}=\hat{d}=0}$ é obtida considerando-se constantes a

tensão de entrada ($\hat{v}_{bat} = 0$) e a razão cíclica ($\hat{d} = 0$) e que a corrente no indutor sofra pequenas perturbações. E é determinada por (4.41).

$$Z_{v}(s) = A1 \cdot \left[\frac{(A2) \cdot s^{2} + (A3) \cdot s + R_{bar_{P}} \cdot D^{\prime 2}}{1 + \frac{D \cdot D^{\prime} \cdot R_{bar_{P}}}{R_{bar_{P}} \cdot D^{\prime} + R_{se_{p}}} + C_{eq_{P}} \left(R_{bar_{P}} + R_{se_{P}} \right) \cdot s} \right].$$
 (4.41)

Onde:

$$A1 = \frac{R_{bar_P} + R_{se_P}}{R_{bar_P} \cdot D' + R_{se_P}},$$

$$A2 = -L_1 \cdot D \cdot C_{eq_P} \cdot R_{se_P},$$

$$A3 = R_{bar_P} \cdot D'^2 \cdot C_{eq_P} \cdot R_{se_P} - L_1 \cdot D.$$

A Fig. 4.13 mostra o circuito equivalente.

Fig. 4.13 – Circuito do conversor boost modelo CA com tensão de entrada e razão cíclica constantes.

4.4 CONTROLE MODO CORRENTE MÉDIA

A técnica de controle aplicada ao conversor é a do controle modo corrente média, pois apresenta vantagens importantes como: proteção de sobre-corrente, função de transferência do conversor se aproxima a uma de primeira ordem, imunidade a ruídos, proporciona frequência de comutação constante.

O diagrama de blocos do controle modo corrente média é apresentado na Fig. 4.14.

Fig. 4.14 – Diagrama de blocos do controle modo corrente média.

A malha de Corrente é a que está dentro da região tracejada mostrada na Fig. 4.14. Onde:

 $G_i(s)$: Função de transferência do conversor *boost*;

 $F_m(s)$: Função de transferência do comparador *PWM*;

 $H_i(s)$: Função de transferência do elemento de medição de corrente (ganho de amostragem de corrente);

 $H_e(s)$: Função de transferência matemática para testar robustez da malha de corrente;

C_i(s): Função de transferência do compensador de corrente.

A malha de Tensão é a malha externa que gera a referência da malha de corrente, onde:

 $C_{v}(s)$: Função de transferência do compensador de tensão;

 $G_C(s)$: Bloco externo igual a 1+ $C_i(s)$;

 $Z_{\nu}(s)$: Função de transferência da tensão de saída perturbando a corrente no indutor (função de transferência da planta de tensão);

 $H_{\nu}(s)$: Função de transferência do elemento de medição de tensão (ganho de amostragem de tensão).

No projeto do controle modo corrente média projeta-se primeiramente a malha de controle de corrente e depois a malha de controle de tensão, pois aquela está incluída nesta.

4.4.1 MALHA DE CORRENTE

Função de transferência do conversor boost - G_i(s)

A função de transferência $G_i(s) = \left(\frac{\hat{i}_{L1}}{\hat{d}}\right)_{\hat{v}_{bat}=0}$ é determinada por (4.40).

<u>Função de transferência do comparador PWM - F_m(s)</u>

A função de transferência do comparador *PWM* $F_m(s)$ (ganho do modulador) é determinada por (4.42).

$$F_m(s) \cong \frac{1}{V_D}$$
 (4.42)

Onde V_D é a amplitude da onda dente de serra.

Função de transferência do elemento de medição de corrente (ganho de amostragem de corrente) - H_i(s)

Função de transferência do elemento de medição de corrente (ganho de amostragem de corrente) do tipo sensor resistivo é determinada por (4.43).

$$H_i(s) = G_{dif} \cdot R_{sh}. \tag{4.43}$$

Onde:

 R_{sh} : sensor de corrente (resistor shunt);

 G_{dif} : ganho do amplificador diferencial.

Função de transferência - H_e(s)

 $H_e(s)$ é o ganho de amostragem que representa as não idealidades não consideradas na modelagem, principalmente, em altas freqüências. É uma função matemática que tem dois zeros no semi-plano direito e a mesma é incorporada para testar simplesmente a robustez do sistema. Aplicando-se esta função, a margem de fase *MF* de laço aberto da malha de corrente deve ser considerada entre 20° a 40°. A função de transferência $H_e(s)$ é determinada por (4.44).

$$H_{e}(s) \approx 1 + \frac{s}{w_{z} \cdot Q_{z}} + \frac{s^{2}}{w_{z}^{2}},$$

$$w_{z} = \pi \cdot f_{eq};$$

$$Q_{z} = -\frac{2}{\pi}.$$
(4.44)

<u>Função de transferência de laço aberto da malha de corrente sem compensador –</u> <u>FTLA_{sci}(s)</u>

A função de transferência de laço aberto da malha de corrente sem compensador é determinada por (4.45).

$$FTLA_{sci}(s) = G_i(s) \cdot F_m(s) \cdot H_i(s) \cdot H_e(s).$$

$$(4.45)$$

Critério para escolha da frequência de cruzamento de laço aberto da malha de corrente - f_{ci}

Quanto maior a freqüência de cruzamento f_{ci} , melhor a resposta dinâmica do sistema, porém, para evitar os efeitos do chaveamento sobre o sinal de controle, deve possuir valor inferior a 1/4 da frequência de comutação.

Ganho do Compensador de Corrente - G_{ci}

Com o valor da frequência de cruzamento obtém-se o valor do ganho do compensador de corrente da curva de ganho de $FTLA_{sci}(s)$. O ganho do compensador de corrente em valor absoluto é determinado por (4.46).

$$G_{ci} = 10^{\frac{|G_{ci} - dB|}{20}}.$$
(4.46)

<u>Margem de Fase - MF_i</u>

Escolhe-se a margem de fase MF_i entre 20° e 40°.

<u>Avanço de fase requerido - a_i</u>

O valor do avanço de fase requerido é determinado por (4.47).

$$\alpha_i = MF_i - P_i - 90^{\circ}. \tag{4.47}$$

Onde:

 P_i : defasagem provocada pelo sistema determinada a partir da curva de fase da $FTLA_{sci}(s)$.

Com o valor do avanço de fase requerido escolhe-se o compensador de corrente adequado.

Função de transferência do compensador de corrente – C_i(s)

O ganho da função de transferência em malha aberta da planta de corrente, $FTMA_i$, em baixas freqüências é baixo, o que implica em erro estático. Para corrigir o problema, optou-se por um compensador de corrente proporcional-integral (*PI*) com filtro capacitivo, tipo 2, que possui um zero alocado convenientemente para que a frequência de cruzamento f_{ci} ocorra no

ponto desejado, -20db/dec, conforme sugestão da teoria de controle de fontes chaveadas [48]. Um pólo na origem e outro que pode ser alocado numa frequência qualquer, no caso usado para compensar um zero da planta em altas frequências. O pólo na origem inserido pelo compensador minimiza o erro estático. O pólo e o zero do compensador foram alocados de acordo com os critérios adotados em [31]. A Fig. 15 apresenta o compensador de corrente adotado.

Fig. 4.15 – Compensador de corrente e sua resposta em frequência.

A função de transferência do compensador de corrente $C_i(s)$ é dada por (4.48).

$$C_{i}(s) = \frac{1}{R_{1i} \cdot C_{1i}} \cdot \frac{(s + \frac{1}{R_{2i} \cdot C_{2i}})}{s \cdot \left(s + \frac{C_{1i} + C_{2i}}{R_{2i} \cdot C_{1i} \cdot C_{2i}}\right)}.$$
(4.48)

As freqüências do zero f_{zi} e do segundo pólo f_{p2i} , são determinadas por (4.49) e (4.50), respectivamente.

$$f_{zi} = \frac{1}{2\pi \cdot R_{2i} \cdot C_{2i}}.$$
 (4.49)

$$f_{p2i} = \frac{C_{1i} + C_{2i}}{2\pi \cdot R_{2i} \cdot C_{1i} \cdot C_{2i}} \cong \frac{1}{2\pi \cdot R_{2i} \cdot C_{1i}}, \quad \text{se } C_{2i} >> C_{1i}.$$
(4.50)

<u>Critérios para alocação dos pólos e zero na malha de corrente são descritos a seguir</u> <u>utilizando o Fator - K_i</u>

O fator K é uma ferramenta matemática para definir a forma e a característica da função de transferência. Independente do tipo de compensador de corrente escolhido, o fator K é uma medida da redução do ganho em baixas frequências e do aumento de ganho em altas

frequências, o que se faz controlando a alocação dos pólos e zeros do compensador, em relação à frequência de cruzamento do sistema.

Para o compensador tipo 2 (escolhido) o zero é alocado a um fator K_i abaixo da frequência de cruzamento, enquanto o pólo a um fator K_i acima dela. As frequências do zero f_{zi} , do pólo $1 f_{p1i}$ e do pólo $2 f_{p2i}$ são determinadas por (4.51), (4.52) e (4.53), respectivamente.

$$f_{zi} = \frac{f_{ci}}{K_i}.$$
(4.51)

$$f_{p1i} = 0. (4.52)$$

$$f_{p2i} = K_i \cdot f_{ci}. \tag{4.53}$$

O fator K_i para o compensador tipo 2 é determinado por (4.54).

$$K_i = tg\left(\frac{\alpha}{2} + \frac{\pi}{4}\right). \tag{4.54}$$

A Fig. 4.16 mostra o avanço de fase α em função do fator K.

Fig. 4.16 – Curva avanço de fase α em função do fator K.

Componentes do compensador de corrente proporcional-integral (PI) com filtro capacitivo

O pólo na origem causa uma variação inicial no ganho de -20dB/dec. A frequência na qual esta linha deve cruzar o ganho unitário é definida como frequência de ganho unitário UGF_i . G_{ci} é o ganho necessário que se dar ao compensador para que se obtenha a frequência de corte desejada. A frequência de ganho unitário corresponde, quando o sistema operar em malha fechada, à frequência de corte. As capacitâncias dos capacitores C_{1i} e C_{2i} , a resistência

de R_{2i} , a frequência de ganho unitário UGF_i e o ganho do compensador de corrente G_{ci} são determinados, respectivamente, por (4.55), (4.56), (4.57), (4.58) e (4.59).

$$C_{1i} = \frac{1}{2\pi \cdot f_{ci} \cdot G_c \cdot K_i \cdot R_{1i}}.$$
(4.55)

$$C_{2i} = C_{1i} \cdot \left(K_i^2 - 1\right). \tag{4.56}$$

$$R_{2i} = \frac{K_i}{2\pi \cdot f_{ci} \cdot C_{2i}}.$$
(4.57)

$$UGF_{i} = \frac{1}{2\pi \cdot R_{1i} \cdot (C_{1i} + C_{2i})}.$$
(4.58)

$$G_{ci} = \frac{R_{2i}}{R_{1i}}.$$
 (4.59)

<u>Função de transferência de laço aberto da malha de corrente com compensador -</u> <u>FTLA_{cci}(s)</u>

A função de transferência de laço aberto da malha de corrente com compensador $FTLA_{cci}(s)$ é determinada por (4.60).

$$FTLA_{cci}(s) = FTLA_{sci}(s) \cdot C_i(s).$$

$$(4.60)$$

4.4.2 MALHA DE TENSÃO

<u>Função de transferência da tensão de saída perturbando a corrente no indutor (função de</u> <u>transferência da planta de tensão) - Z_v(s)</u>

A função de transferência $Z_v(s) = \left(\frac{\hat{v}_{bar_p}}{\hat{i}_{L1}}\right)_{\hat{v}_{bat}=\hat{d}=0}$, a qual relaciona tensão de saída com

a corrente no indutor, é determinada por (4.41).

Função de transferência do elemento de medição de tensão (ganho de amostragem de tensão) - H_v(s)

A amostragem da tensão pode ser realizada por um divisor de tensão resistivo conectado na saída do conversor, isto é, no barramento *CC*, cujo valor deve ser igual ao valor da V_{refv} , quando a tensão do barramento *CC* possui valor nominal. A Fig. 4.17 mostra o circuito do divisor de tensão resistivo para amostragem da tensão de saída.

Fig. 4.17 – Divisor de tensão para amostragem da tensão de saída.

Função de transferência do elemento de medição de tensão (ganho de amostragem de tensão) $H_{\nu}(s)$ é determinada por (4.61).

$$H_{v}(s) = \frac{V_{refv}}{V_{bar_{p}}} = \frac{R_{div_{2}}}{R_{div_{1}} + R_{div_{2}}}.$$
(4.61)

Função de transferência de malha fechada da malha de corrente - FTMF_i(s)

A função de transferência de malha fechada da malha de corrente $FTMF_i(s)$ a partir do diagrama de blocos da Fig. 4.14 é determinada por (4.62).

$$FTMF_{i}(s) = \frac{F_{m}(s) \cdot G_{i}(s)}{1 + C_{i}(s) \cdot F_{m}(s) \cdot G_{i}(s) \cdot H_{e}(s) \cdot H_{i}(s)}$$
(4.62)

Função de transferência de laço aberto da malha de tensão sem compensador - FTLA_{scv}(s)

A malha de tensão compreende além da malha de corrente, a qual possui função de transferência de malha fechada da malha de corrente $FTMF_i(s)$, o ganho de amostragem de tensão $H_v(s)$, a função de transferência da planta de tensão $Z_v(s)$, e o bloco externo $G_C(s)$.

A função de transferência de laço aberto da malha de tensão sem compensador $FTLA_{scv}(s)$ é determinada por (4.63).

$$FTLA_{scv}(s) = FTMF_i(s) \cdot H_v(s) \cdot Z_v(s) \cdot G_c(s).$$

$$(4.63)$$

Critério para escolha da frequência de cruzamento de laço aberto da malha de tensão - f_{cv}

A malha de tensão é muito mais lenta que a malha de corrente para garantir o desacoplamento entre as malhas de controle e evitar distorções na corrente de entrada devido à corrente pulsada de 120Hz da carga não linear (inversor). Portanto a frequência de cruzamento de laço aberto da malha de tensão f_{cv} deve ser escolhida de 10Hz a 30Hz. A Fig. 2.9 mostra a forma de onda da corrente drenada pela carga não linear.

Ganho do Compensador de Tensão - G_{cv}

Com o valor da frequência de cruzamento obtém-se o valor do ganho do compensador de tensão da curva de ganho de $FTLA_{scv}(s)$. O ganho do compensador de tensão em valor absoluto é determinado por (4.64).

$$G_{cv} = 10^{\frac{|G_{cv} - dB|}{20}}.$$
(4.64)

<u>Margem de Fase - MF_v</u>

Escolhe-se a margem de fase MF_v entre 45° e 90°.

<u>Avanço de fase requerido - a_v</u>

O valor do avanço de fase requerido é determinado por (4.65).

$$\alpha_{v} = MF_{v} - P_{v} - 90^{\circ}. \tag{4.65}$$

Onde:

 P_{v} : defasagem provocada pelo sistema determinada a partir da curva de fase da $FTLA_{scv}(s)$.

Com o valor do avanço de fase requerido escolhe-se o compensador de tensão adequado.

Função de transferência do compensador de tensão – C_v(s)

Quando o valor do avanço de fase requerido α for menor que 90° escolhe-se o compensador de tensão proporcional-integral (*PI*) com filtro capacitivo, ou seja, tipo 2. A Fig. 4.18 apresenta o compensador de corrente adotado.

Fig. 4.18 – Compensador de tensão e sua resposta em frequência.

A função de transferência do compensador de tensão $C_{\nu}(s)$ é determinada por (4.66).

$$C_{\nu}(s) = \frac{1}{R_{1\nu} \cdot C_{1\nu}} \cdot \frac{\left(s + \frac{1}{R_{2\nu} \cdot C_{2\nu}}\right)}{s \cdot \left(s + \frac{C_{1\nu} + C_{2\nu}}{R_{2\nu} \cdot C_{1\nu} \cdot C_{2\nu}}\right)}.$$
(4.66)

As frequências do zero f_{zv} e do segundo pólo f_{p2v} são determinadas por (4.67) e (4.68), respectivamente.

$$f_{zv} = \frac{1}{2\pi \cdot R_{2v} \cdot C_{2v}}.$$
 (4.67)

$$f_{p2\nu} = \frac{C_{1\nu} + C_{2\nu}}{2\pi \cdot R_{2\nu} \cdot C_{1\nu} \cdot C_{2\nu}} \cong \frac{1}{2\pi \cdot R_{2\nu} \cdot C_{1\nu}}, \quad \text{se } C_{2\nu} >> C_{1\nu}.$$
(4.68)

<u>Critérios para alocação dos pólos e zero na malha de corrente são descritos a seguir</u> <u>utilizando o Fator - K_v</u>

Utilizam-se os mesmos critérios adotados para malha de corrente.

As frequências do zero f_{zv} , do pólo 1 f_{p1v} e do pólo 2 f_{p2v} são determinadas por (4.69), (4.70) e (4.71), respectivamente.

$$f_{zv} = \frac{f_{cv}}{K_v}.$$
 (4.69)

$$f_{p1v} = 0. (4.70)$$

$$f_{p2v} = K_v \cdot f_{cv}.$$
 (4.71)

O fator K_v para o compensador tipo 2 é determinado por (4.54).

A Fig. 4.16 mostra o avanço de fase α em função do fator K.

Componentes do compensador de tensão proporcional-integral (PI) com filtro capacitivo

As capacitâncias dos capacitores $C_{1\nu}$ e $C_{2\nu}$, a resistência de $R_{2\nu}$, a frequência de ganhos unitário UGF_{ν} e o ganho do compensador são determinados, respectivamente, por (4.72), (4.73), (4.74), (4.75) e (4.76).

$$C_{1\nu} = \frac{1}{2\pi \cdot f_{c\nu} \cdot G \cdot K_{\nu} \cdot R_{1\nu}}.$$
(4.72)

$$C_{2\nu} = C_{1\nu} \cdot \left(K_{\nu}^{2} - 1\right). \tag{4.73}$$

$$R_{2\nu} = \frac{K}{2\pi \cdot f_{c\nu} \cdot C_{2\nu}}.$$
(4.74)

$$UGF_{\nu} = \frac{1}{2\pi \cdot R_{1\nu} \cdot (C_{1\nu} + C_{2\nu})}.$$
(4.75)

$$G_{cv} = \frac{R_{2v}}{R_{1v}}.$$
 (4.76)

Função de transferência de laço aberto da malha de tensão com compensador - FTLA_{ccv}(s)

A função de transferência de laço aberto da malha de tensão com compensador $FTLA_{ccv}(s)$ é determinada por (4.77).

$$FTLA_{ccv}(s) = FTLA_{scv}(s) \cdot C_{v}(s).$$

$$(4.77)$$

4.5 PROJETO DO CIRCUITO DE CONTROLE

Nesta seção será apresentado o projeto do controle modo corrente média do conversor proposto.

4.5.1 CÁLCULO DOS PARÂMETROS DO CONVERSOR EQUIVALENTE

A razão cíclica D_{eq} , freqüência de comutação f_{eq} , resistência série equivalente R_{se_p} e capacitância C_{eq_p} , resistência de saída R_{bar_p} e da tensão de saída referidas ao primário V_{bar_p} são determinadas por (4.24), (4.25), (4.26), (4.27), (4.28) e (4.29), respectivamente.

$$D_{eq} = 2 \cdot 0, 64 \cdot 1 = 0,28$$

$$f_{eq} = 2 \cdot 25k = 50 \text{ Hz}$$

$$R_{se_p} = \frac{0,020.0,23}{0,020.(6+6.1+6.1)+0,23.(4+2.1+2.1)} = 2,09m\Omega$$

$$C_{eq_p} = (6+6\cdot1+6\cdot1)\cdot940\cdot10^{-6} + (4+2\cdot1+2\cdot1)\cdot2,2\cdot10^{-6} = 16.938\cdot10^{-6} \text{ F}$$

$$R_{bar_p} = \frac{160}{12} \cdot \left(\frac{1}{1+1+1}\right) = 4,44\Omega$$

$$V_{bar_p} = \frac{66,67+66,67}{2} = 66,67\text{ V}$$

A tabela 4.1 apresenta os parâmetros do circuito equivalente.

Tensão de entrada nominal	$V_{bat} = 48 \mathrm{V}$
Indutor <i>boost</i>	$L_1 = 60 \mu H$
Freqüência equivalente	$f_{eq} = 50 \mathrm{kHz}$
Razão cíclica equivalente	$D_{eq} = 0,28 \text{ e} D'_{eq} = 0,72$
Resistência série equivalente referida ao primário	$R_{se_p} = 2,09 \mathrm{m}\Omega$
Capacitância equivalente	$C_{eq_p} = 16.938 \mu F$
Resistência de saída referida ao primário	$R_{bar_p} = 4,44\Omega$
Tensão de saída referida ao primário	$V_{bar_P} = 66,67 \mathrm{V}$

TABELA 4.1 – PARÂMETROS DO CONVERSOR EQUIVALENTE.

4.5.2 PROJETO DA MALHA DE CORRENTE

Especificações para malha de corrente

Para malha de corrente têm-se as especificações discriminadas na tabela 4.2:

TABELA 4.2 – ESPECIFICAÇÕES PARA MALHA DE CORRENTE.

Tensão de referência (de saída do amplificador diferencial)	$V_{refi} = 3V$
Ganho do amplificador diferencial	$K_{difi} = 20$
Resistência do sensor de corrente	$R_{sh} = 5m\Omega$
Amplitude da onda dente de serra	$V_D = 5, 2V$

<u>Cálculo da função de transferência do conversor boost – G_i(s)</u>

A função de transferência do conversor *boost* $G_i(s)$ é determinada por 4.40.

$$G_i(s) = \frac{57,66.\left[\frac{s}{26,573} + 1\right]}{\frac{s^2}{5,122 \cdot 10^5} + \frac{s}{2,498 \cdot 10^3} + 1}$$

<u>Cálculo da função de transferência do comparador PWM - F_m(s)</u>

A função de transferência do comparador *PWM* $F_m(s)$, ganho do modulador, é determinada por (4.42).

$$F_m(s) \cong \frac{1}{5,2} = 0,192$$

<u>Cálculo da função de transferência do elemento de medição de corrente do tipo sensor</u> <u>resistivo - H_i(s)</u>

A função de transferência do elemento de medição de corrente do tipo sensor resistivo é determinada por (4.43).

$$H_i(s) = 20 \cdot 5 \cdot 10^{-3} = 0,1$$

<u>Cálculo da função de transferência devido ao efeito da amostragem - H_e(s)</u>

A função de transferência devido ao efeito da amostragem $H_e(s)$ é determinada por (4.44).

$$H_e(s) = 1 - \frac{s}{100 \cdot 10^3} + \frac{s^2}{\pi^2 \cdot (50 \cdot 10^3)^2}$$

<u>Diagramas de ganho e de fase da função de transferência de laço aberto da malha de</u> <u>corrente sem compensador - FTLA_{sci}(s)</u>

Para projetar o compensador de corrente, determina-se a função de transferência de laço aberto da malha de corrente sem compensador que é determinada por (4.45).

Os diagramas de ganho e fase das funções de transferência $FTLA_{sci}(s)$ e $G_i(s)$ exata e aproximada são mostrados na Fig. 4.19.

Fig. 4.19 – *Diagrama de bode da função de transferência* $FTLA_{sci}(s)$.

Escolha da frequência de cruzamento de laço aberto da malha de corrente - f_{ci}

$$f_{ci} = \frac{f}{6} = 8,333 kHz$$

Cálculo do Ganho do Compensador de Corrente - G_{ci}

O valor do ganho do compensador de corrente é obtido da curva de ganho de $FTLA_{sci}(s)$ para frequência de cruzamento f_{ci} escolhida.

$$G_{ci}dB = -7,511dB$$

O valor ganho do compensador de corrente em valor absoluto é determinado por (4.46).

$$G_{ci} = 10^{\frac{|-7.511|}{20}} = 2,374$$

Escolha da Margem de Fase - MF_i

 $MF_{i} = 30^{\circ}$

Obtenção da defasagem provocada pelo sistema - P_i

A defasagem provocada pelo sistema P_i obtida a partir da curva de fase da $FTLA_{sci}(s)$.

$$P_i = -120,305^{\circ}$$

<u>Cálculo do avanço de fase requerido - a_i</u>

O valor do avanço de fase requerido é determinado por (4.49).

$$\alpha_i = 30 - (-120, 31) - 90^\circ = 60,305^\circ$$

Como o avanço de fase requerido é menor que 90° comprova-se que deve ser utilizado o compensador tipo dois.

Obtenção do valor do Fator - K_i

Através da curva do avanço de fase em função do Fator K_i , $\alpha(FK_i)$, obtém-se o valor do Fator K_i para o avanço de fase requerido.

$$K_i = 3,772$$

<u>Características do compensador de corrente proporcional-integral (PI) com filtro</u> <u>capacitivo</u>

a) Cálculo dos componentes

As capacitâncias dos capacitores C_{1i} e C_{2i} , a resistência de R_{2i} , a frequência de ganho unitário UGF_i e o ganho do compensador de corrente G_{ci} são determinados, respectivamente, por (4.55), (4.56), (4.57), (4.58) e (4.59). Admitindo-se $R_{1i} = 10k\Omega$.

$$C_{1i} = \frac{1}{2\pi \cdot 8,333 \cdot 10^3 \cdot 2,374 \cdot 3,772 \cdot 10 \cdot 10^3} = 213,2pF$$

Valor adotado: $C_{1i} = 220 pF$

$$C_{2i} = 220 \cdot 10^{-12} \cdot (3,772^2 - 1) = 2,91\eta F$$

Valor adotado: $C_{2i} = 2,7\eta F$

$$R_{2i} = \frac{3,772}{2\pi \cdot 8,333 \cdot 10^3 \cdot 2,7 \cdot 10^{-9}} = 26.680\Omega$$

Valor adotado: $R_{2i} = 27k\Omega$

$$UGF_{i} = \frac{1}{2\pi \cdot 10 \cdot 10^{3} \cdot (220 \cdot 10^{-12} + 2, 7 \cdot 10^{-9})} = 5,451 kHz$$
$$G_{ci} = \frac{27 \cdot 10^{3}}{10 \cdot 10^{3}} = 2,7$$

b) Cálculo da função de transferência - C_i(s)

A função de transferência do compensador de corrente $C_i(s)$ é dada por (4.48).

$$C_i(s) = 4,545 \cdot 10^5 \cdot \frac{(s+1,372 \cdot 10^4)}{s.(s+1,821 \cdot 10^5)}$$

c) Diagramas de ganho e de fase

Os diagramas de ganho e de fase da função de transferência do compensador de corrente são mostrados na Fig. 4.20.

Fig. 4.20 – Diagrama de bode da função de transferência $C_i(s)$.

<u>Diagramas de ganho e de fase da função de transferência de laço aberto da malha de</u> <u>corrente com compensador - FTLA_{cci}(s)</u>

A função de transferência de laço aberto da malha de corrente com compensador $FTLA_{cci}(s)$ é determinada por (4.60).

Os diagramas de ganho e fase da função de transferência $FTLA_{cci}(s)$ são mostrados na Fig. 4.21.

Fig. 4.21 – Diagrama de bode da função de transferência FTLA_{cci}(s).

Observa-se que a frequência de cruzamento f_{ci} está situada em torno de 8,333kHz e a margem de fase MF_i em torno de 30°, conforme desejado, garantindo a estabilidade do conversor.

$$MF_{i} = \left| -180 - \frac{180}{\pi} \cdot \arg\left[FTLA_{cci} \left(2 \cdot \pi \cdot f_{ci} \right) \right] \right| = 28,97^{\circ}$$

4.5.3 PROJETO DA MALHA DE TENSÃO

<u>Especificações para malha de tensão</u>

Para malha de tensão adota-se a tensão de referência $V_{refv} = 3$ V.

<u>Cálculo da função de transferência da tensão de saída perturbando a corrente no indutor</u> (função de transferência da planta de tensão) - Z_v(s)

A função de transferência da planta de tensão do conversor *boost* $Z_{\nu}(s)$ é determinada por 4.41.

$$Z_{\nu}(s) = 2,5 \cdot \left(\frac{\frac{s^2}{-3,874 \cdot 10^9} + \frac{s}{3,557 \cdot 10^4} + 1}{1 + \frac{s}{16,949}}\right)$$

<u>Cálculo da função de transferência do elemento de medição de tensão (ganho de amostragem de tensão) - H_v(s)</u>

Função de transferência do elemento de medição de tensão (ganho de amostragem de tensão) $H_{\nu}(s)$ é determinada por (4.61).
$$H_v(s) = \frac{3}{66,67} = 0,045$$

Também os resistores do divisor de tensão são determinados por (4.61).

Adotando-se $R_{div l} = 1M\Omega$, tem-se:

$$R_{div_2} = \frac{0,045 \cdot 1 \cdot 10^6}{1+0,045} = 47,120 \cdot 10^3$$

Valor adotado: $R_{div 2} = 47 \mathrm{k}\Omega$.

Diagramas de ganho e de fase da função de transferência de laço aberto da malha de corrente sem compensador - FTLA_{scv}(s)

Para projetar o compensador de tensão, deve-se determinar a função de transferência de laço aberto da malha de tensão sem compensador $FTLA_{scv}(s)$ que é determinada por (4.63).

Os diagramas de ganho e fase das funções de transferência $FTLA_{scv}(s)$ e $Z_v(s)$ exata e aproximada são mostrados na Fig. 4.22.

Fig. 4.22 – Diagrama de bode da função de transferência FTLA_{scv}(s).

Escolha da frequência de cruzamento de laço aberto da malha de tensão - f_{cv}

Frequência de cruzamento f_{cv} escolhida:

$$f_{cv} = 20Hz$$

<u>Cálculo do Ganho do Compensador de Tensão -</u> G_{cv}

O valor do ganho do compensador de tensão é obtido da curva de ganho de $FTLA_{scv}(s)$ para frequência de cruzamento f_{cv} escolhida.

$$G_{cv}dB = -16,44dB$$

O ganho do compensador de tensão em valor absoluto é determinado por (4.64).

$$G_{cv} = 10^{\frac{|-16,44|}{20}} = 6,638$$

<u>Escolha da Margem de Fase - MF_v</u>

 $MF_{v} = 60^{\circ}$

Obtenção da defasagem provocada pelo sistema - P_v

A defasagem provocada pelo sistema P_v obtida a partir da curva de fase da $FTLA_{scv}(s)$.

$$P_{v} = -81,824^{\circ}$$

<u>Cálculo do avanço de fase requerido - α_v </u>

O valor do avanço de fase requerido é determinado por (4.65).

$$\alpha_v = 60 - (-81, 824) - 90^\circ = 51,824^\circ$$

Como o avanço de fase requerido é menor que 90° comprova-se que deve ser utilizado o compensador tipo 2.

Obtenção do valor do Fator K_v

Através da curva do avanço de fase em função do Fator K_v , $\alpha(FK_v)$, obtém-se o valor do Fator K_v para o avanço de fase requerido.

$$K_v = 2,89$$

<u>Características do compensador de corrente proporcional-integral (PI) com filtro</u> <u>capacitivo</u>

a) Cálculo dos componentes

As capacitâncias dos capacitores $C_{1\nu}$ e $C_{2\nu}$, a resistência de $R_{2\nu}$, a frequência de ganhos unitário UGF_{ν} e o ganho do compensador são determinados, respectivamente, por (4.72), (4.73), (4.74), (4.75) e (4.76).. Admitindo-se $R_{1\nu} = 100$ k Ω .

$$C_{1\nu} = \frac{1}{2\pi \cdot 20 \cdot 6,638 \cdot 2,89 \cdot 100 \cdot 10^3} = 4,149\eta F$$

Valor adotado: $C_{1v} = 3,9\eta F$

$$C_{2\nu} = 3,9 \cdot 10^{-9} \cdot (2,89^2 - 1) = 28,67\eta F$$

Valor adotado: $C_{2v} = 33\eta F$

$$R_{2\nu} = \frac{2,89}{2\pi \cdot 20 \cdot 33 \cdot 10^{-9}} = 696,9k\Omega$$

Valor adotado: $R_{2v} = 680k\Omega$

$$UGF_{v} = \frac{1}{2\pi \cdot 100 \cdot 10^{3} \cdot (3, 9 \cdot 10^{-9} + 33 \cdot 10^{-9})} = 43,131 Hz$$
$$G_{cv} = \frac{680 \cdot 10^{3}}{100 \cdot 10^{3}} = 6,8$$

b) Cálculo da função de transferência $C_{\nu}(s)$

A função de transferência do compensador de tensão $C_{\nu}(s)$ é determinada por (4.66).

$$C_{\nu}(s) = 2,564 \cdot 10^3 \cdot \frac{(s+44,563)}{s.(s+421,637)}$$

c) Diagramas de ganho e de fase

Os diagramas de ganho e de fase da função de transferência do compensador de corrente são mostrados na Fig. 4.23.

Fig. 4.23 – *Diagrama de bode da função de transferência* $C_{\nu}(s)$.

Diagramas de ganho e de fase da função de transferência de laço aberto da malha de tensão com compensador - FTLA_{ccv}(s)

A função de transferência de laço aberto da malha de tensão com compensador $FTLA_{ccv}(s)$ é determinada por (4.77).

Os diagramas de ganho e fase da função de transferência $FTLA_{ccv}(s)$ são mostrados na Fig. 4.24.

Fig. 4.24 – *Diagrama de bode da função de transferência* $FTLA_{ccv}(s)$.

Observa-se que a frequência de cruzamento f_{cv} está situada em torno de 20Hz e a margem de fase em torno de 60° conforme desejado garantindo a estabilidade do conversor, conforme mostrado a seguir.

$$MF_{v} = \left| -180 - \frac{180}{\pi} \cdot \arg\left[FTLA_{ccv} \left(2 \cdot \pi \cdot f_{cv} \right) \right] \right| = 62,054^{\circ}$$

4.6 CONSIDERAÇÕES FINAIS

Neste capítulo foram apresentados: o procedimento para obtenção do circuito equivalente, a modelagem dinâmica, a metodologia de controle modo corrente média e o projeto completo do circuito de controle do conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo.

Verificou-se que o circuito equivalente do conversor proposto, que tem a mesma topologia de um conversor *boost* convencional, simplificou o estudo de seu comportamento em regime permanente e em regime dinâmico.

Através da modelagem dinâmica foram determinadas as funções de transferência das malhas de controle do conversor, as quais possibilitaram o projeto do circuito de controle de tensão e corrente adotando a metodologia de controle modo corrente média. Nele as malhas de corrente e tensão foram projetadas de modo a satisfazer os critérios de estabilidade da teoria de controle de fontes chaveadas. A malha de tensão foi projetada com um valor de frequência de corte bem abaixo do valor da malha de corrente, considerando-se a não linearidade da carga.

CAPÍTULO V

RESULTADOS DE SIMULAÇÃO E EXPERIMENTAIS

5.1 CONSIDERAÇÕES INICIAIS

Neste capítulo são apresentados os resultados de simulação e experimentais de forma a verificar seu comportamento frente às variações da tensão de entrada e aos transitórios de carga do conversor projetado nos capítulos *III* e *IV*.

Os resultados de simulação foram obtidos a partir do circuito simulado com dados obtidos do projeto do conversor, através do software $ORCAD^{TM}$.

Os resultados experimentais coletados contemplam o funcionamento completo do conversor em malha aberta e fechada. Em malha aberta são apresentadas: a comprovação do ganho estático, as curvas de tensão sobre os capacitores de filtro de saída para carga equilibrada e desequilibrada e as curvas de rendimento. Em malha fechada são apresentadas as curvas da tensão e da corrente de entrada, dos enrolamentos primários e secundários do transformador, dos diodos e das chaves semicondutoras e do barramento *CC* de saída, as curvas de tensão dos capacitores de filtro de saída para carga equilibrada e desequilibrada, e ainda o rendimento do conversor. No apêndice é mostrado o circuito do protótipo implementado em laboratório.

Ao final do capítulo será validada a metodologia de projeto e a análise teórica apresentada nos capítulos anteriores.

5.2 CURVAS DE SIMULAÇÃO E EXPERIMENTAIS

5.2.1 AQUISIÇÕES

As simulações e medições dos resultados experimentais foram obtidas com tensão de entrada de 48V e carga nominal, exceto quando especificado em contrário.

5.2.2 CIRCUITO DE SIMULAÇÃO

O circuito simulado é apresentado na Fig. 5.1.

5.2.3 **ΡR**ΟΤΌΤΙΡΟ

O protótipo de 1KW foi implementado no laboratório do grupo de processamento de energia e controle - *GPEC* do departamento de engenharia elétrica da *UFC* para validar o estudo teórico do conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo. A Fig. 5.2 mostra a vista fotográfica do conversor ensaiado em laboratório.

Fig. 5.2 – Fotografia do protótipo implementado.

5.2.4 CURVAS DE GANHO ESTÁTICO

A curva de ganho estático experimental mostra que seus valores são semelhantes aos obtidos nas curvas dos ganhos estáticos: teórico e simulado. A Fig. 5.3 apresenta as curvas de ganho estático teórico, simulado e experimental.

Fig. 5.3 – Ganho estático teórico, simulado e experimental.

5.2.5 TENSÃO SOBRE OS CAPACITORES DE FILTRO DE SAÍDA

<u>Com carga equilibrada</u>

As tensões sobre os capacitores C_{o1} e C_{o2} com carga equilibrada foram obtidas variandose a carga desde 0% (a vazio) até 100% do seu valor nominal, sendo esta distribuída igualmente em paralelo com cada capacitor.

Com carga desequilibrada

As tensões com carga desequilibrada foram obtidas fixando-se 50% do valor da carga nominal em paralelo com o capacitor C_{o2} e variando-se os outros 50% em paralelo com o capacitor C_{o1} , isto é, desde 0% (a vazio) até 50% do valor nominal da carga.

O procedimento adotado foi idêntico para malha aberta e fechada.

Tensões experimentais com carga equilibrada e desequilibrada

As Tabelas 5.1 e 5.2 mostram os valores de tensão sobre os dois capacitores de filtro de saída do barramento CC, C_{ol} e C_{o2} com carga equilibrada e desequilibrada em malha aberta e malha fechada, respectivamente. Verificar-se que as tensões possuem valores aproximados, em torno de 200V em cada capacitor para diferentes situações de carga, portanto adequadas para alimentação de inversores com divisor capacitivo, tais como: inversores com célula NPC, meia-ponte e duplo meia-ponte [34]. Apresentam estas pequenas diferenças porque suas tensões dependem da razão cíclica e da relação de transformação, portanto, também, dependem da dispersão magnética.

Em malha aberta

R _{bar} // C _{o1} (Ω)	R _{bar} // C _{o2} (Ω)	Carga equilibrada		R _{bar} // C _{o1}	<i>R_{bar} // C₀₂</i>	Carga desequilibrada	
		V _{Co1} (V)	V _{Co2} (V)	(Ω)	(Ω)	V _{Co1} (V)	V _{Co2} (V)
80	80	203,2	192,2	80	80	208,8	191,2
100	100	207	192,8	100	80	206	193,2
133	133	209	197,7	133	80	203,9	197
200	200	210	202	200	80	201	200
300	300	204	200	300	80	196	203
400	400	207	205	A vazio	80	208	215

TABELA 5.1 – TENSÕES SOBRE OS CAPACITORES DE FILTRO DE SAÍDA C_{ol} e C_{o2} com carga equilibrada e desequilibrada em malha aberta.

<u>Em malha fechada</u>

TABELA 5.2 – TENSÕES SOBRE OS CAPACITORES DE FILTRO DE SAÍDA C_{o1} e C_{o2} com carga equilibrada e desequilibrada em malha fechada.

R _{bar} // C _{o1} (Ω)	R _{bar} // C _{o2} (Ω)	Carga equilibrada		R _{bar} // C _{o1}	<i>R_{bar} // C₀₂</i>	Carga desequilibrada	
		V _{Co1} (V)	V _{Co2} (V)	(Ω)	(Ω)	V _{Co1} (V)	V _{Co2} (V)
80	80	206	194	80	80	206	195
100	100	207	194	100	80	206	195
133	133	206,3	193,7	133	80	209	191
200	200	208	193	200	80	211	190
300	300	208	193	300	80	212	190
A vazio	A vazio	200	201	A vazio	80	230	170

5.2.6 FORMAS DE ONDA DE TENSÃO DA ENTRADA E DE CORRENTE DO INDUTOR L_1

As Figs. 5.4 e 5.5 apresentam as formas de onda de tensão de entrada e corrente do indutor I_{L1} simuladas e experimentais, respectivamente. Observa-se que a corrente que circula através do indutor apresenta baixa ondulação, aumentando a confiabilidade do banco de

baterias, com frequência igual ao dobro da frequência de comutação, permitindo a redução de peso e volume. Os valores obtidos da simulação e experimentalmente estão de acordo com o projeto.

Fig. 5.4 – Formas de onda de tensão de entrada V_{bat} e corrente do indutor I_{L1} simuladas.

Fig. 5.5 – Formas de onda de tensão de entrada V_{bat} e corrente do indutor I_{L1} experimentais. Escalas: 1 - V_{bat} (50V/div.), 2 - I_{L1} (10A/div.), tempo(5µs/div.)

5.2.7 FORMAS DE ONDAS DE TENSÃO E CORRENTE DOS ENROLAMENTOS Primários e Secundários do Transformador

As Figs. 5.6 e 5.7 apresentam as formas de onda das tensões e correntes no enrolamento primário L_{p1} do transformador, V_{Lp1} e I_{Lp1} , simuladas e experimentais e as Figs. 5.8 e 5.9 do enrolamento L_{p2} , V_{Lp2} e I_{Lp2} . Observa-se que existe um equilíbrio de corrente em cada enrolamento do primário do transformador com baixa ondulação. Observa-se que as pequenas

diferenças entre as tensões e as correntes simuladas e experimentais são devidas à indutância de dispersão adquirida durante a construção dos componentes magnéticos.

Fig. 5.6 – Formas de onda de tensão e de corrente do enrolamento primário, V_{Lpl} e I_{Lpl} , simuladas.

Fig. 5.7 – Formas de onda de tensão e de corrente do enrolamento primário, V_{Lp1} e I_{Lp1} , experimentais. Escalas: 1 - V_{Lp1} (50V/div.), 2 - I_{Lp1} (20A/div.), tempo(10µs/div.)

Fig. 5.8 – Formas de onda de tensão e de corrente do enrolamento primário, V_{Lp2} e I_{Lp2} , simuladas.

Fig. 5.9 – Formas de onda de tensão e de corrente do enrolamento primário, V_{Lp2} e I_{Lp2} , experimentais. Escalas: 1 - V_{Lp2} (50V/div.), 2 - I_{Lp2} (20A/div.), tempo(10µs/div.)

As Figs. 5.10 e 5.11 apresentam as formas de onda das tensões e correntes no enrolamento primário L_{s1} do transformador, V_{Ls1} e I_{Ls1} , simuladas e experimentais e as Figs. 5.12 e 5.13 do enrolamento L_{s2} , V_{Ls2} e I_{Ls2} .

Fig. 5.10 – Formas de onda de tensão e de corrente do enrolamento secundário, V_{Ls1} e I_{Ls1}, simuladas.

Fig. 5.11 – Formas de onda de tensão e de corrente do enrolamento secundário, V_{Ls1} e I_{Ls1} , experimentais. Escalas: 1 - V_{Ls1} (50V/div.), 2 - I_{Ls1} (20A/div.), tempo(10µs/div.)

Fig. 5.12 – Formas de onda de tensão e de corrente do enrolamento secundário, V_{Ls2} e I_{Ls2}, simuladas.

Fig. 5.13 – Formas de onda de tensão e de corrente do enrolamento secundário, V_{Ls2} e I_{Ls2} , experimentais. Escalas: 1 - V_{Ls2} (50V/div.), 2 - I_{Ls2} (20A/div.), tempo(10µs/div.)

5.2.8 FORMAS DE ONDA DE TENSÃO E CORRENTE DAS CHAVES

As Figs. 5.14 e 5.15 mostram as formas de onda de tensão e corrente na chave S_1 . Observa-se que a tensão sobre as chaves é menor que a metade da tensão de saída, o que permite que sejam utilizadas chaves com baixa resistência estática entre dreno e fonte em estado de condução, $R_{DS(on)}$.

Fig. 5.14 – Formas de onda de tensão e de corrente da chave S_1 , V_{S1} e I_{S1} , simuladas.

Fig. 5.15 – Formas de onda de tensão e de corrente da chave S_I, V_{SI} e I_{SI} , experimentais. Escalas: 1 - V_{SI} (50V/div.), 2 - I_{SI} (20A/div.), tempo(10 μ s/div.)

5.2.9 FORMAS DE ONDA DE TENSÃO REVERSA SOBRE OS DIODOS

As Figs. 5.16 e 5.17 mostram as formas de onda das tensões sobre os diodos D_1 e D_2 , V_{D1} e V_{D2} , simuladas e experimentais e as Figs. 5.18 e 5.19 as dos diodos D_4 e D_6 , V_{D4} e V_{D6} . Verifica-se que as tensões possuem valores condizentes com os de projeto.

Fig. 5.16 – Formas de onda de tensão reversa sobre os diodos $D_1 e D_2$, $V_{D1} e V_{D2}$, simuladas.

Fig. 5.17 – Formas de onda de tensão reversa sobre os diodos $D_1 e D_2$, $V_{D1} e V_{D2}$, experimentais. Escalas: 1 - $V_{D2} e 2 - V_{D1}$ (50V/div.), tempo(10µs/div.)

Fig. 5.18 – Formas de onda de tensão reversa sobre os diodos $D_4 e D_6$, $V_{D4} e V_{D6}$, simuladas.

Fig. 5.19 – Formas de onda de tensão reversa sobre os diodos $D_4 e D_6$, $V_{D4} e V_{D6}$, experimentais. Escalas: 1 - $V_{D4} e 2$ - $V_{D6} (50V/div.)$, tempo(10µs/div.)

5.2.10 FORMAS DE ONDA DE TENSÃO E CORRENTE DE SAÍDA

As Figs. 20 e 21 apresentam as formas de onda de tensão e corrente de saída do barramento *CC*. Observa-se que a tensão de saída é regulada no valor desejado para carga nominal.

Fig. 5.20 – Formas de onda de tensão e corrente de saída, V_{bar} e I_{bar}, simuladas.

Fig. 5.21 – Formas de onda de tensão e corrente de saída, V_{bar} e I_{bar}, experimentais. Escalas: V_{bar} (100V/div.), I_{bar} (2A/div.) tempo(5ms/div.)

5.2.11 FORMAS DE ONDA DE TENSÃO E CORRENTE DE SAÍDA NOS Transitórios de Carga

As Figs. 5.22 e 5.23 apresentam, respectivamente, as curvas simuladas e experimentais de tensão e corrente de saída com degrau de carga de 100% para 10%. Verifica-se que após a aplicação do degrau de carga 100% para 10% a tensão do barramento *CC* se estabiliza.

Fig. 5.22 – Tensão e corrente de saída, V_{bar} e I_{bar}, simuladas - degrau de carga de 100% para 10%.

Fig. 5.23 – Tensão e corrente de saída, V_{bar} e I_{bar}, experimentais - degrau de carga de 100% para 10%. Escalas: 1 - V_{bar} (100V/div.), 2 - I_{bar} (500mA/div.) tempo(25ms/div.)

As Figs. 5.24 e 5.25 apresentam, respectivamente, as curvas simuladas e experimentais de tensão e corrente de saída com degrau de carga de 10% para 100%. Verifica-se que após a aplicação do degrau de carga 10% para 100% a tensão do barramento *CC* se estabiliza.

Fig. 5.24 – Tensão e corrente de saída, V_{bar} e I_{bar}, simuladas - degrau de carga de 10% para 100%.

Fig. 5.25 – Tensão e corrente de saída, V_{bar} e I_{bar}, experimentais degrau de carga de 10% para 100%. Escalas: 1 - V_{bar} (100V/div.), 2 - I_{bar} (500mA/div.) tempo(25ms/div.)

As Figs. 5.26 e 5.27 apresentam, respectivamente, as formas de onda simuladas e experimentais de tensão e corrente de saída a vazio (sem carga).

Fig. 5.26 – Formas de onda de tensão e corrente de saída, V_{bar} e I_{bar}, simuladas a vazio.

Fig. 5.27 – Formas de onda de tensão e corrente de saída, V_{bar} e I_{bar}, experimentais a vazio. Escalas: 1 - V_{bar} (100V/div.), 2 - I_{bar} (500mA/div.) tempo(25ms/div.)

Observa-se que tanto na simulação como na experimentação, mesmo a vazio, a tensão de saída se mantém no valor esperado, isto devido à atuação do controle, portanto ele não se perde. A Fig. 5.28 apresenta as formas de onda simuladas de tensão de saída e sobre os capacitores de filtro de saída e da corrente de saída para carga não linear, linear e a vazio.

Fig. 5.28 – Formas de onda de tensão da saída V_{bar} e dos capacitores de filtro de saída V_{Col} e V_{Co2} e de corrente da saída I_{bar} , e da entrada I_{bat} com carga não linear, linear e sem carga (a vazio).

5.2.12 RENDIMENTO

A Fig. 5.29 apresenta as curvas de rendimento em função da potência de saída para tensões de entrada mínima de 42V, nominal de 48V e máxima de 54V do conversor proposto neste trabalho. Verifica-se que o rendimento para tensão e carga nominais é aproximadamente 93%.

Fig. 5.29 – Curvas de rendimento em função da potência de saída P_{bar} para tensões de entrada mínima 42V, nominal 48V e máxima 54V.

5.3 CONSIDERAÇÕES FINAIS

Os resultados obtidos da simulação e experimentais estão de acordo com os valores obtidos no projeto, portanto validam a análise teórica realizada neste trabalho.

Com os resultados obtidos nos transitórios de carga verificou-se que a tensão do barramento CC e o tempo de resposta aos degraus de carga estão dentro de valores aceitáveis e validam o projeto do circuito de controle.

Observou-se que a ondulação da corrente de entrada apresenta baixa ondulação, aumentando a confiabilidade do banco de baterias e possui frequência igual ao dobro da frequência de chaveamento, que as tensões sobre os capacitores de saída é, aproximadamente, a metade da tensão de saída para diferentes situações de carga, portanto adequadas para alimentação de inversores com divisor capacitivo, tais como: inversores com célula NPC, meia-ponte e duplo meia-ponte e que a tensão sobre cada chave é menor que a metade da tensão de saída.

A curva de rendimento do conversor para as tensões de entrada mínima 42V, nominal 48V e máxima 54V com potência de saída 1kW mostra que o conversor proposto tem rendimento elevado e apresenta peso e volume reduzidos comparado com outros conversores para as mesmas aplicações.

CONCLUSÃO

Este trabalho apresentou o conversor *CC-CC boost* baseado na célula de comutação de três estados para alimentação de inversores com divisor capacitivo com o objetivo de atender aplicações que exigem alto ganho de tensão, tais como: sistema ininterrupto de energia, acionamentos de motores, entre outros.

As análises qualitativa e quantitativa; modelagem e projeto do circuito de controle; projeto, simulação e implementação do conversor de 1kW foram amplamente detalhados. Apresentaram-se ainda as formas de onda simuladas e os resultados experimentais, validando a análise teórica desenvolvida nesta dissertação.

A partir dos resultados experimentais constou-se que as tensões sobre os capacitores de filtro de saída possuem tensões balanceadas para diferentes situações de carga, portanto adequadas para alimentação de inversores com divisor capacitivo como os inversores com célula *NPC (Neutral Point Clamping)*, meia-ponte e duplo meia-ponte [34]. E que as chaves controladas possuem reduzido esforço de tensão, menor que a metade da tensão de saída, permitindo que sejam utilizadas chaves com baixa resistência estática entre dreno e fonte em estado de condução, $R_{DS(on)}$, melhorando sua eficiência.

Para o projeto do controle do conversor obteve-se seu circuito equivalente para simplificar o estudo do comportamento em regime permanente e dinâmico. Através da modelagem dinâmica determinaram-se as funções de transferência das malhas de controle do conversor, as quais possibilitaram o projeto do circuito de controle de tensão e corrente. Dos resultados experimentais observou-se que o controle atua adequadamente mantendo a tensão de saída no valor esperado para diferentes situações de carga.

Os resultados obtidos mostraram que este conversor apresenta tamanho e custo reduzidos e alto rendimento, maior que 92% para valores nominais. Possui reduzido volume dos materiais magnéticos, conseqüência de sua operação com alta freqüência.

Dessa forma, conclui-se que o conversor proposto é uma solução vantajosa em comparação com outros conversores de mesma potência de saída empregados em aplicações em que se deseja alto ganho de tensão com alta eficiência. Este trabalho atingiu os objetivos propostos e pode ser utilizado como fonte de informação para implementação e desenvolvimento de novas topologias.

Pode-se sugerir como continuidade deste projeto os estudos teórico e experimental com número maior de enrolamentos secundários e relação de transformação diferente de um, implementação de técnicas de controle digital e projeto de um sistema completo CC-CC/CC-CA para aplicações em sistemas autônomos de energia elétrica.

REFERÊNCIAS BIBLIOGRÁFICAS

- G. V. T. Bascopé, I. Barbi, "Generation of a Family of Non-Isolated DC-DC PWM Converters Using New Three-State Switching Cells", IEEE Power Electronic Specialists Conference, 2000, PESC' 00, vol.2, 18-23, pp. 858-863, Jun. 2000.
- [2] Q. Zhao, F. C. Lee, "High Efficiency, High Step-Up DC-DC Converters", IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 65-73, jan. 2003.
- [3] Q. Zhao, F. C. Lee, "High Performance Coupled-Inductor DC-DC Converters", IEEE Applied Power Electronics Conference and Exposition, 2003, APEC 2003, vol. 1, pp. 109-113, feb. 2003.
- [4] Q. Zhao, F. Tao, Y. HU, F. C. Lee, "Active-Clamp DC/DC Converters Using Magnetic Switches", IEEE Applied Power Electronics Conference and Exposition, 2001, APEC 2001, vol. 2, 4-8, pp. 946-952, mar. 2001.
- Y. Jang, M. M. Jovanovic, "New Two-Inductor Boost Converter with Auxiliary Transformer", IEEE Transactions on Power Electronics, vol. 19, no. 1, pp. 169-175, jan. 2004.
- [6] Y. Jang, M. M. Jovanovic, Y. Hu, "Non-Isolated Two-Inductor Boost Converter with Improved EMI Performance", in Telecommunications Conference, 2005. INTELEC '05. Twenty-Seventh International.
- [7] T. J. Liang, K. C. Tseng, "Analysis of Integrated Boost-Flyback Step-Up Converter", in IEE Proceedings on Electric Power Applications, vol. 152, no. 2, pp. 217-225, mar. 2005.
- [8] K. C. Tseng, T. J. Liang, "Novel High-Efficiency Step-Up Converter", in IEE Proceedings on Electric Power Applications, vol. 151, no. 2, pp. 182-190, mar. 2004.
- [9] R. J. Wai, R. Y. Duan, "High-Efficiency DC/DC Converter with High Voltage Gain", in IEE Proceedings on Electric Power Applications, vol. 152, no. 4, pp. 793-802, jul. 2005.

- [10] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, J. S. Kim, "High Boost Converter Using Voltage Multiplier", IEEE Industrial Electronics Society, 2005, IECON 2005, pp. 6, nov. 2005.
- [11] B. Axelrod, Y. Berkovich, A. Ioinovici, "Transformerless DC-DC Converters with a Very High DC Line-to-Load Voltage Ratio", International Symposium on Circuits and Systems, 2003, ISCAS'03, vol. 3, 25-28, pp. III-435-438, may 2003.
- [12] O. Abutbul, A. Gherlitz, Y. Berkovich, A. Ioinovici, "Step-Up Switching-Mode Converter with High Voltage Gain Using a Switched-Capacitor Circuit", IEEE Transactions on Circuits and Systems, vol. 50, no. 8, pp. 1098-1102, aug. 2003.
- [13] R. Gules, L. L. Pfitscher, L. C. Franco, "An Interleaved Boost DC-DC Converter with Large Conversion Ratio", IEEE International Symposium on Power Electronic 2003, ISIE'03, vol. 1, 9-12, pp. 411-416, jun. 2003.
- [14] L. C. Franco, L. C. Franco, R. Gules, "A New High Static Gain Non-Isolated DC-DC Converter. In Proceedings", IEEE-PESC'03 Conf. 2003, pp. 1367-1372, 2003.
- [15] E. Rogers, "Understanding Boost Power Stages in Switchmode Power Supplies", TI Literature, Application Report, no. SLVA061, 1999.
- [16] D. S. Oliveira Jr., R. P. T. Bascopé, C. E. A. Silva, "Proposal of a New High Step-Up Converter for UPS Applications", IEEE International Symposium on Industrial Electronics, 2006, ISIE 2006, IEEE Catalog Number 06TH8892, pp. 1288-1292, 2006.
- [17] E. A. S. da Silva, D. S. Oliveira Jr., T. A. M. Oliveira, F. L. Tofoli, R. P. T. Bascopé, "A Novel Interleaved Boost Converter with High Voltage Gain for UPS Applications", in 9° Congresso Brasileiro de Eletrônica de Potência, COBEP 2007/SOBRAEP, pp. 999-1003, set./out. 2007.

- [18] L. H. S. C. Barreto, A. A. Pereira, V. J. Farias, L. C. de Freitas, J. B. Vieira Jr., "A Boost Converter Associated With a New Non-Dissipative Snubber", Applied Power Electronics Conference and Exposition, 1998, APEC 1998, vol. 2, pp. 1077-1083, feb. 1998.
- [19] L. H. S. C. Barreto, E. A. A. Coelho, V. J. Farias, J. C. Oliveira, L. C. de Freitas, J. B. Vieira Jr., "A Quasi-Resonant Quadratic Boost Converter Using a Single Resonant Network", IEEE Transactions on Industrial Electronics, vol. 52, no. 2, pp. 552-557, april 2005.
- [20] R. N. A. L. Silva, G. A. L. Henn, P. P. Praça, L. H. S. C. Barreto, D. S. Oliveira Jr., F. L. M. Antunes, "Soft-Switching Interleaved Boost Converter With Hight Voltage Gain", IEEE Power Electronics Specialists Conference, 2008, PESC 2008, vol. 1, pp. 4157-4161, 2008.
- [21] Y. J. A. Alcazar, R. P. T. Bascopé, D. S. Oliveira Jr., E. H. P. Andrade, W. G. Cárdenas, "High Voltage Gain Boost Converter Based On Three-State Switching Cell And Voltage Multipliers", IEEE Transactions on Power Electronics, pp. 2346-2352, 2008.
- [22] R. P. T. Bascopé, C. G. C. Branco, G. V. T. Bascopé, C. M. T. Cruz, F. A. A. de Souza, L. H. S. C. Barreto, "A New Isolated DC-DC Boost Converter using Three-State Switching Cell", Applied Power Electronics Conference and Exposition, 2008, APEC 2008, pp. 607-613, feb. 2008.
- [23] G. V. T. Bascopé, R. P. T. Bascopé, D. S. Oliveira Jr., F. L. M. Antunes, S. V. Araújo, C. G. C. Branco, "A High Step-Up DC-DC Converter Based on Three-State Switching Cell", IEEE International Symposium on Industrial Electronics, 2006, ISIE 2006, vol. 9-12, pp. 998-1003, jul. 2006.
- [24] G. C. Silveira, R. P. T. Bascopé, M. R. Borges Neto, "Conversor CC-CA Não Isolado com Alto Ganho de Tensão para Aplicação em Sistemas Autônomos de Energia Elétrica", in 7º Congresso Internacional sobre Geração Distribuída e Energia no Meio Rural, AGRENER GD 2008.

- [25] G. V. T. Bascopé, I. Barbi, "Novo Conversor Elevador CC-CC PWM não Isolado com Célula de Três Estados de Comutação", in XIII Congresso Brasileiro de Automática, 2000, CBA 2000, pp. 778-783, 2000.
- [26] G. V. T. Bascopé, I. Barbi, "Conversor CC-CC Elevador de Tensão com Célula de Comutação de Três Estados para Aplicação em Telecomunicações", in III Congresso de Infra-estrutura para Telecomunicações, 2000, CININTEL 2000. pp. 393-405, 2000.
- [27] M. Prudente, L. L. Pfitscher, R. Gules, "Boost VWC A Simple Non Isolated Large Step-Up Ratio DC-DC Converter", in VI Conferência Internacional de Aplicações Industriais, 2004, INDUSCON 2004, vol. 1, 2004.
- [28] R. J. Wai, C. Y. Lin, R. Y. Duan, "High-Efficiency DC-DC Converter with High Voltage Gain and Reduced Switch Stress", IEEE Industrial Electronics Society, 2004, IECON 2004, pp.773-778, nov. 2004.
- [29] V. Vorpérian, "Simplified Analysis of PWM Converters Using the Model of the PWM Switch: Parts I: Continuous Conduction Mode", IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 490-496, may 1990.
- [30] V. Vorpérian, "Simplified Analysis of PWM Converters Using the Model of the PWM Switch: Parts II: Discontinuous Conduction Mode", IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 497-505, may 1990.
- [31] W. Tang, F. C. Lee, R. B. Ridley, "Small Signal Modeling of Average Current Mode Control", IEEE Transactions on Power Electronics, vol. 8, no. 2, pp. 112-119, april 1993.
- [32] L. H. Dixon, "Average Current Mode Control of Switching Power Supplies", Unitrode Power Supply Design Seminar SEM-700 - Topic 5, 2001, pp. 5-1 to 5-4.

- [33] C. M. C. de Brito, R. P. S. Leão, F. L. M. Antunes, "Avaliação da Proteção e do Acionamento de um Motor de Indução e de Métodos para Melhoria de sua Suportabilidade sob Afundamentos de Tensão", Revista Brasileira de Eletrônica de Potência, 2005, iSOBRAEP, vol. 10, no. 2, pp. 9-16, nov. 2005.
- [34] C. G. C. Branco, "Sistema Ininterrupto de Energia de Dupla Conversão, Não Isolado, com Tensões de Entrada e Saída Universais", Fortaleza, 2004. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Ceará, Fortaleza.
- [35] G. V. T. Bascopé, "Conversor Flyback-Push-Pull Alimentado em Corrente com correção de fator de potência", Florianópolis, 1996. Dissertação (Mestrado em Engenharia Elétrica) - INEP/UFSC.
- [36] G. V. T. Bascopé, "Nova Família de Conversores CC-CC PWM Não Isolados Utilizando Células de Comutação de Três Estados", Florianópolis, 2001. Tese (Doutorado em Engenharia Elétrica) - INEP/UFSC.
- [37] R. Gules, "Estudo de Conversores CC-CC Isolados Operando com Elevada Tensão de Saída e Alto Rendimento, para Aplicações Aeroespaciais", Florianópolis, 2001. Tese (Doutorado em Engenharia Elétrica) - INEP/UFSC.
- [38] L. M. Menezes, "Projeto Inversol Desenvolvimento de uma Fonte Ininterrupta de Energia com Possibilidade de Uso em Sistema Fotovoltaico", Fortaleza, 2007. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Ceará, Fortaleza.
- [39] L. D. S. Bezerra, "Conversor CC-CA para Aplicação em Sistemas Autônomos de Energia Elétrica", Fortaleza, 2009. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Ceará, Fortaleza.
- [40] K. C. A. Souza, "Conversor CC-CA Monofásico para Interligar Painéis Fotovoltaicos ao Sistema Elétrico", Fortaleza, 2003. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Ceará, Fortaleza.

- [41] S. V. Garcia, "Otimização de Projeto de Fontes de Alimentação para Centrais de Telecomunicações", Florianópolis, 2000. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Santa Catarina, Brasil.
- [42] F. J. N. Silva, "Estudo de um Conversor Push-Pull Alimentado em Corrente com Grampeamento Ativo", Florianópolis, 1998. Dissertação (Mestrado em Engenharia Elétrica) - INEP/UFSC.
- [43] M. T. Peraça, "Conversor CC-CC Elevadores para Aplicação em Equipamentos de Refrigeração", Florianópolis, 2002. Dissertação (Mestrado em Engenharia Elétrica) - INEP/UFSC.
- [44] D. A. R. Caballero, "Novo conversor CC-CC Flyback-Push-Pull Alimentado em Corrente: Desenvolvimento Teórico e Experimental", Florianópolis, 1999. Tese (Doutorado em Engenharia Elétrica) - INEP/UFSC.
- [45] T. S. Elias Jr., "Análise e Projeto de Compensadores para o Conversor Boost", Florianópolis, 1994. Dissertação (Mestrado em Engenharia Elétrica) – INEP – UFSC.
- [46] R. Demonti, "Sistema de Co-Geração de Energia a partir de Painéis Fotovoltaicos", Florianópolis, 1998. Dissertação (Mestrado em Engenharia Elétrica) – INEP – UFSC.
- [47] I. Barbi, D. C. Martins, "Conversores CC-CC Básicos Não Isolados", 2^a ed. Florianópolis, Editora do Autor, 2006.
- [48] I. Barbi, "Projetos de Fontes Chaveadas", 2^a ed. Florianópolis, Editora do Autor, 2007.
- [49] J. A. Pomílio, "Fontes Chaveadas", Unicamp, 2004
- [50] L. F. P. Melo, "Análise e Projeto de Fontes Chaveadas", 1^a ed. São Paulo, Editora Érica Ltda., 1996.
- [51] R. W. Erickson, D. Maksimovic, "Fundamentals of Power Electronics", 2.ed. Editora Kluwer Academic Publishers, New York, 2002.

- [52] Y. J. A. Alcazar, W. G. C. Cabero, R. P. T. Bascopé, S. Daher, D. S. Oliveira Jr., G. J. M. de Sousa, "Modeling and Control of the High Voltage Gain Boost Converter Based on Three-State Switching Cell and Voltage Multipliers (mc)", in 10° Congresso Brasileiro de Eletrônica de Potência, COBEP 2009/SOBRAEP, pp. 655-664, set./out. 2009.
- [53] R. A. da Câmara, C. M. T. Cruz, R. P. T. Bascopé, "Retificador Boost Baseado na Célula de Comutação de Três Estados para Aplicações em Nobreaks", Revista Brasileira de Eletrônica de Potência, 2010, iSOBRAEP, vol. 15, no. 4, pp. 275-283, set./nov. 2010.
- [54] R. A. da Câmara, C. M. T. Cruz, R. P. T. Bascopé, "Boost Based on Three-state Switching Cell for UPS Applications", in 10° Congresso Brasileiro de Eletrônica de Potência, COBEP 2009/SOBRAEP, pp. 313-318, set./out. 2009.
- [55] A. I. Pressman, "Switching Power Supply Design", 2^a ed. New York, Editora McGraw-Hill, 1998.
- [56] B. Johansson, "Improved Models for DC-DC Converters", Licentiate Thesis, Lund University, Lund, 2003.
- [57] M. H. Rashid, "Power Electronics Handbook", Editora Academic Press, Califórnia, 2001.
- [58] M. Brown, "Pratical Switching Power Supply Design", Editora Academic Press Inc., 1990.
- [59] I. L. Kosow, "Máquinas Elétricas e Transformadores", 4^a Ed. Editora Globo, 1982.
- [60] K. Ogata, "Engenharia de Controle Moderno", 4ª Ed. Editora Prentice Hall, 2003.
- [61] C. W. T. Mclyman, "Transformer and inductor design handbook", New York. Editora Marcel Dekker Inc, 1988.

- [62] P. C. Todd, "UC3854 Controlled Power Factor Correction Circuit Design", Application Notes U-134, Unitrode, <u>http://www.unitrode.com</u>, 1999.
- [63] Thornton, "Catálogo de Núcleos de Ferrite", http://www.thornton.com.br, 2009.
- [64] International Rectifier, "Catálogo de Diodos e Transistores", <u>http://www.irf.com</u>, 2009.
- [65] ON Semiconductor, "Catálogo de Diodos", http://www.onsemi.com, 2009.
- [66] ON Semiconductor, "High Speed Dual Mosfet Drivers", http://www.onsemi.com, 2009.
- [67] Epcos, "Catálogo de Capacitores", <u>http://www.epcos.com</u>, 2009.

APÊNDICE A

ESQUEMÁTICOS DOS CIRCUITOS PROJETADOS

Nas Figs. A1, A2, A3 e A4 apresentam os esquemáticos dos circuitos projetados e montados no laboratório.

Fig. A.1 – Circuito de potência do conversor.

Fig. A.3 – Placa com circuito impresso com silhueta de componentes - vista superior.

Fig. A.4 – Placa com circuito impresso com silhueta de componentes - vista inferior.