UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

CÉLULA DE COMUTAÇÃO SUAVE APLICADA A UM CONVERSOR BOOST DE ALTO GANHO

Ranoyca Nayana Alencar Leão e Silva

Fortaleza Fevereiro de 2009

RANOYCA NAYANA ALENCAR LEÃO E SILVA

CÉLULA DE COMUTAÇÃO SUAVE APLICADA A UM CONVERSOR BOOST DE ALTO GANHO

Dissertação submetida à Universidade Federal do Ceará como parte dos requisitos para obtenção do grau de Mestre em Engenharia Elétrica.

Orientador: Prof. Dr. Luiz Henrique Silva

Colado Barreto

Co-orientador: Prof. Dr. Demercil de Souza

Oliveira Jr.

Fortaleza Fevereiro de 2009

S583c Silva, Ranoyca Nayana Alencar Leão e

Célula de comutação suave aplicada a um conversor *boos*t de alto ganho / Ranoyca Nayana Alencar Leão e Silva, 2009.

107 f.; il. enc.

Orientador: Prof. Dr. Luiz Henrique Silva Colado Barreto Co-orientador: Prof. Dr. Demercil de Souza Oliveira Junior Área de concentração: Eletrônica de Potência e Acionamentos Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Tecnologia. Depto. de Engenharia Elétrica, Fortaleza, 2009.

1. Eletrônica de potência. 2. Ressonância. 3. Controle digital. I. Barreto, Luiz Henrique Silva Colado (orient.). II. Oliveira Junior, Demercil de Souza (co-orient.). III. Universidade Federal do Ceará – Programa de Pós-Graduação em Engenharia Elétrica. IV. Título.

CDD 621.3

RANOYCA NAYANA ALENCAR LEÃO E SILVA

CÉLULA DE COMUTAÇÃO SUAVE APLICADA A UM CONVERSOR BOOST DE ALTO GANHO

Esta Dissertação foi julgada adequada para a obtenção de título de Mestre em Engenharia Elétrica, Área de Concentração em Eletrônica de Potência e Acionamentos, e aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal do Ceará.

Ranoyca Nayana Alencar beso e Silva.

Ranoyca Nayana Alencar Leão e Silva

Orientador:

Prof. Luiz Henrique Silva Colado Barreto, Dr.

Banca Examinadora:

Prof. João Antônio Corrêa Pinto, Dr.

Prof. Fernando Luiz Marcelo Antunes, PhD.

Prof. Demercil de Souza Oliveira Júnior, Dr

Fortaleza, 27 de fevereiro de 2009

"Tudo posso n'Aquele que me fortalece" (Filipenses 4.13)

AGRADECIMENTOS

Primeiramente a Deus, pelo dom da vida e pela chance que me foi concedida.

Ao professor Dr. Luiz Henrique Silva Colado Barreto, pela sua orientação, amizade e disponibilidade durante todo este tempo. Agradeço pela oportunidade de trabalhar e aprender com este grupo.

Ao professor Dr. Demercil de Souza Oliveira Jr., pela presença constante e disponibilidade nos momentos de dificuldades, pela experiência e pelos conhecimentos transmitidos. Obrigada pela paciência.

Aos professores do Departamento de Engenharia Elétrica da UFC, Fernando Antunes, José Carlos, René Bascopé e Cícero Cruz, aos funcionários do departamento Rafael, Mário Sérgio, Conceição e Geraldinho, responsáveis diretamente ou indiretamente pela minha formação no programa de Mestrado.

Ao técnico Pedro, pela disponibilidade no auxilio da montagem do protótipo.

Aos meus amigos e colegas de mestrado (em ordem alfabética): André Lima, Danilo, Davi Nunes, Éber, Edílson, Elmano, Fabíola, Felinto, Fernando Sobreira, George Harrison, Gustavo Henn, Halisson Alves, Hermínio, Lincon, Lucas Maciel, Luiz Daniel, Mônica, Nelber, Paulo Praça, Raphael Amaral, Rômulo Leite, Thiago Maciel, Victor de Paula, e aos demais colegas de laboratório que de alguma forma contribuíram.

À minha família, a todos os meus amigos e o meu namorado Samuel, por todo suporte e pela ajuda em todos os momentos da minha vida, bons e ruins e que compreenderam minha ausência durante os períodos de dedicação aos estudos. Todos são muito importantes para mim.

À FUNCAP que contribuiu com o apoio financeiro necessário à realização desse trabalho e desenvolvimento científico.

A todas as pessoas que por motivo de esquecimento não foram citadas anteriormente, vou deixando neste espaço minhas sinceras desculpas.

Silva, R. N. A. L. e "Célula de comutação suave aplicada a um conversor *boost* de alto ganho", Universidade Federal do Ceará – UFC, 2009, 86p.

Esta dissertação apresenta as análises qualitativa e quantitativa, a estrutura dos circuitos de controle, a simulação e os resultados experimentais de uma célula de comutação suave aplicada a um conversor *boost* de alto ganho. O compensador do tipo Proporcional Integral Derivativo – PID, o qual é implementado digitalmente utilizando o microcontrolador do tipo PIC 16F877A, serve para garantir a regulação do barramento de saída em 180 V mediante variações de carga. A célula de comutação suave aplicada nas duas chaves principais do conversor, garantem pequenas perdas por comutação. As principais características do sistema são: "terra" comum para acionamento de todas as chaves, comutação ZVS para as chaves principais e ZCS para as auxiliares, esforços de tensão reduzidos nos semicondutores, presença de uma célula de acoplamento magnético que permite a obtenção de um ganho estático bastante elevado, operação dos elementos magnéticos com o dobro da freqüência de chaveamento, equilíbrio de tensão entre os capacitores de saída. Por fim, o desenvolvimento de um protótipo para uma potência de 500 W que valida o princípio de funcionamento do sistema proposto através da comparação dos resultados experimentais com os de simulação.

Palavras-Chave: Eletrônica de Potência, célula de comutação suave, conversor *boost* de alto ganho.

Silva, R. N. A. L. e "Soft-Switching Interleaved *Boost* Converter with High Voltage Gain", Universidade Federal do Ceará – UFC, 2009, 86p.

This work presents the qualitative and quantitative analysis, the control circuitry, simulation and experimental results of a soft switching cell applied on a high gain boost converter. The PID compensator is implemented digitally on a microcontroller PIC 16F877A. It assures that 180 volts of output does not changes with load variations. The soft switching cells applied on the main switches of the converter causes low switching losses. The main features proposed to this system are: common source terminal to all the switches, ZVS commuting on the main switches, ZCS commuting on the auxiliaries, low voltage switching stress, balanced voltage on the output capacitors, the presence of a magnetic coupling cell, which allows an even higher gain, and the magnetic components operating with the double of switching frequency. A prototype of 500W was built to validate the work principles of the proposed system.

Keywords: Power Electronics, Soft-Switching Cells, High Voltage Gain *Boost* Converter.

SUMÁRIO

LISTA DE FIG	URAS	xi
LISTA DE TAI	BELAS	xiv
SIMBOLOGIA		XV
INTRODUÇÃO)	1
CAPÍTULO 2		
ANÁLISES QU	JALITATIVA E QUANTITATIVA DO CONVERSOR $BOOST$ DI	E ALTO
GANHO UTILI	IZANDO CÉLULAS DE COMUTAÇÃO SUAVE	11
2.1 CON	SIDERAÇÕES INICIAIS	11
2.2 ANÁ	LISE QUALITATIVA DO CONVERSOR BOOST DE ALTO	GANHO
UTILIZAND	O CÉLULAS DE COMUTAÇÃO SUAVE	11
2.2.1 I	PRINCÍPIO DO OPERAÇÃO	12
2.2.2 I	FORMAS DE ONDA TEÓRICAS DO CONVERSOR	17
2.3 ANÁ	LISE QUANTITATIVA DA CÉLULA DE COMUTAÇÃO	SUAVE
APLICADA	AO CONVERSOR <i>BOOST</i> DE ALTO GANHO	18
2.3.1 I	PRIMEIRO ESTÁGIO $[t_0,t_1]$ – ETAPA LINEAR PARA i_{Lr2}	22
2.3.2	SEGUNDO ESTÁGIO $[t_1,t_2]$ – PRIMEIRA ETAPA RESSONANTE	24
2.3.3	TERCEIRO ESTÁGIO [t2,t3] – SEGUNDA ETAPA RESSONANTE	28
2.3.4	QUARTO ESTÁGIO [t ₃ ,t ₄] – ETAPA LINEAR PARA v _{Cr4}	30
2.3.5	QUINTO ESTÁGIO [t4,t5] – ETAPA DE POTÊNCIA	31
2.3.6	SEXTO ESTÁGIO [t5,t6] – ETAPA LINEAR PARA VCr1	32
2.3.7	SÉTIMO ESTÁGIO [t ₆ ,t ₇] – ETAPA DE POTÊNCIA	34
2.3.8 I	LIMITES DE X_b	36
2.3.9	GANHO ESTÁTICO DO CONVERSOR	36
2.3.9.1	GRÁFICO DO GANHO ESTÁTICO	37
2.3.10	ANÁLISE DAS TENSÕES E CORRENTES NOS SEMICONDUTOR	RES 38
2.3.10.1	ANÁLISE DAS TENSÕES E CORRENTES NO DIODO D_{b2}	38
2.3.10.2	ANÁLISE DAS TENSÕES E CORRENTES NA CHAVE AUXII	LIAR Sa2
E NO D	IODO D _{r2}	41
2.3.10.3	ANÁLISE DAS TENSÕES E CORRENTES NA CHAVE PRI	NCIPAL
S ₂		44
2.3.10.4	ANÁLISE DAS TENSÕES E CORRENTES NO DIODO D ₄	45
2.4 CON	SIDERAÇÕES FINAIS	47

CAPÍTULO 3

ESTRAT	TÉGIA DE CONTROLE4
3.1	CONSIDERAÇÕES INICIAIS4
3.2	MALHA DE TENSÃO DO CONVERSOR BOOST DE ALTO GANHO
UTILI	ZANDO CÉLULAS DE COMUTAÇÃO SUAVE4
3.3	PROJETO DO COMPENSADOR5
3.4	PROJETO DO CONTROLE DIGITAL 50
3.5	O CIRCUITO DE CONTROLE
3.6	CONSIDERAÇÕES FINAIS
CAPÍTU	TLO 4
RESULT	TADOS DE SIMULAÇÃO E EXPERIMENTAIS6
4.1	CONSIDERAÇÕES INICIAIS6
4.2	CONFIGURAÇÃO DO SISTEMA6
4.3	RESULTADOS DE SIMULAÇÃO
4.4	RESULTADOS EXPERIMENTAIS
4.4.	1 RENDIMENTO DO CONVERSOR
4.5	CONSIDERAÇÕES FINAIS
CAPÍTU	TLO 5
	USÃO70
REFERÉ	ÈNCIAS BIBLIOGRÁFICAS72
APÊND]	ICE A – METODOLOGIA DE PROJETO DO CONVERSOR $BOOST$ DE ALTO
GANHO	UTILIZANDO CÉLULAS DE COMUTAÇÃO SUAVE7
APÊND]	ICE B – ESQUEMÁTICO DO CONVERSOR BOOST DE ALTO GANHO
HTH IZ	ANDO CÉLULAS DE COMUTAÇÃO SUAVE

LISTA DE FIGURAS

Figura 1.1 – Topologia proposta por [3]	1
Figura 1.2 – Topologia proposta por [6]	2
Figura 1.3 – Configuração proposta por [8]	2
Figura 1.4 – Célula de três estados proposta por [9]	3
Figura 1.5 – Célula de três estados proposta por [10]	3
Figura 1.6 – Célula de três estados proposta por [11]	4
Figura 1.7 – Topologia proposta por [12]	4
Figura 1.8 – Conversor boost de alto ganho	5
Figura 1.9 – Conversor <i>boost</i> com célula SR-ZCS-ZVS-PWM	6
Figura 1.10 – Conversor interleaved boost ZCS-ZVS.	7
Figura 1.11 – Circuito equivalente do conversor	7
Figura 1.12 – Conversor boost associado com snubber não-dissipativo	8
Figura 1.13 – Configuração de conversor escolhida	8
Figura 1.14 – Configuração de célula de comutação suave escolhida	9
Figura 1.15 – Conversor boost de alto ganho utilizando célula de comutação suave	9
Figura 2.1 – Conversor <i>boost</i> de alto ganho utilizando células de comutação suave	11
Figura 2.2 – Estágios de operação	13
Figura 2.3 – Primeiro estágio	14
Figura 2.4 – Segundo estágio	14
Figura 2.5 – Terceiro estágio	15
Figura 2.6 – Quarto estágio	15
Figura 2.7 – Quinto estágio	16
Figura 2.8 – Sexto estágio	16
Figura 2.9 – Sétimo estágio	16
Figura 2.10 – Formas de onda teóricas do conversor proposto neste trabalho	17
Figura 2.11 – Circuito equivalente da primeira etapa de operação do conversor boos	st de alto
ganho utilizando células de comutação suave	23
Figura 2.12 – Circuito equivalente da segunda etapa de operação do conversor boos	at de alto
ganho utilizando células de comutação suave	25
Figura 2.13 – Circuito equivalente da terceira etapa de operação do conversor <i>boos</i>	
ganho utilizando células de comutação suave	
Figura 2.14 – Circuito equivalente da quarta etapa de operação do conversor <i>boos</i>	

ganho utilizando células de comutação suave	30
Figura 2.15 - Circuito equivalente da quinta etapa de operação do conversor bodo	ost de alto
ganho utilizando células de comutação suave	32
Figura 2.16 - Circuito equivalente da sexta etapa de operação do conversor boo	ost de alto
ganho utilizando células de comutação suave	33
Figura 2.17 - Circuito equivalente da sétima etapa de operação do conversor boo	ost de alto
ganho utilizando células de comutação suave	35
Figura 2.18 – Gráfico do Ganho Estático	38
Figura 3.1 – Diagrama de blocos Malha de Tensão	49
Figura 3.2 – Sinais dos CIs utilizados no controle do conversor <i>boost</i> de alto ganho	utilizando
células de comutação suave	49
Figura 3.3 – Diagrama de blocos do controlador do conversor	51
Figura 3.4 – Diagrama de Bode da função de Transferência do conversor boost de a	ılto ganho:
(a)Ganho; (b) Fase	52
Figura 3.5 – Diagrama de Bode do sistema não compensado; (a)Ganho; (b) Fase	53
Figura 3.6 – Compensador PID	53
Figura 3.7 – Diagrama de Bode do sistema compensado; (a)Ganho; (b) Fase	55
Figura 3.8 – Ganhos inseridos ao sistema	56
Figura 3.9 – Geração da tensão de controle	58
Figura 3.10 – Geração dos pulsos.	58
Figura 3.11 – Geração dos pulsos das chaves principais e auxiliares	59
Figura 3.12 – Circuito de gatilho das chaves principais e auxiliares	60
Figura 4.1 – Topologia do sistema	61
Figura 4.2 – Tensão e corrente característica da chave principal S_1	62
Figura 4.3 – Tensão e corrente característica da chave auxiliar S_{a1}	63
Figura 4.4 – Corrente na chave auxiliar S_{a1} , tensão nos capacitores C_{r1} e C_{r2}	63
Figura 4.5 – Tensão e corrente de entrada	64
Figura 4.6 – Tensão e corrente de saída	65
Figura 4.7 – Tensão nos capacitores de saída	65
Figura 4.8 – Tensão e corrente característica da chave principal S_1	66
Figura 4.9 – Tensão e corrente característica da chave auxiliar S_{a1}	66
Figura 4.10 – Tensões nos capacitores C_{r1} e C_{r2} e corrente na chave auxiliar S_{a1}	67
Figura 4.11 – Tensão e corrente na saída sobre degraus de carga	67
Figura 4.12 – Tensão e corrente na saída sobre degrau de carga de 500W para 250W	′68

Figura 4.13 – Tensão e corrente na saída sobre degrau de carga de 250W para 500W	58
Figura 4.14 - Curva de rendimento comparativa entre a topologia que utiliza a célula o	de
comutação suave com a topologia que não utiliza a célula	59

LISTA DE TABELAS

Tabela 4.1 – Principais parâmetros do sistema	62
Tabela A.1 – Resumo do Projeto dos indutores do conversor <i>boost</i> de alto ganho	78
Tabela A.2 – Resumo do Projeto dos indutores ressonantes	82
Tabela A.3 – Capacitores utilizados	83
Tabela A.4 – Semicondutores utilizados	83
Tabela A.5 – Diodos <i>boost</i> utilizados	84
Tabela A.6 – Diodos da célula de acoplamento magnético utilizados	84
Tabela A.7 – Diodos da célula de comutação utilizados	84

SIMBOLOGIA

Símbolo	Significado
α_n	Corrente parametrizada de índice "n"
α_{ny}	Corrente parametrizada de índice "ny"
Δv_c	Variação da tensão de controle
ΔT_n	Variação do tempo da etapa "n"
ω_o	Freqüência angular de ressonância
ω_{on}	Freqüência angular de ressonância de índice "n"
ω_{ony}	Freqüência angular de ressonância de índice "ny"
ω_{s}	Freqüência angular de chaveamento
η	Rendimento do conversor
μ_o	Permeabilidade magnética do vácuo
A_e	Área da perna central do núcleo magnético
A_e '	Área da perna central do núcleo do indutor ressonante
A_eA_w	Produto das áreas do núcleo magnético
(A_eA_w) '	Produto das áreas do núcleo magnético do indutor ressonante
A_w	Área da janela do núcleo magnético
A_w '	Área da janela do núcleo do indutor ressonante
B_{max}	Densidade máxima de fluxo magnético
C_{Boost_eq}	Capacitância boost equivalente
C_F	Capacitor de saída C _F
C_{Feq}	Capacitância equivalente vista pela fonte de entrada
C_{Fn}	Capacitor de saída C _F de índice "n"
C_{rn}	Capacitor ressonante de índice "n"
C(s)	Função de transferência do compensador
D	Razão cíclica
D_{bn}	Diodo <i>boost</i> de alto ganho de índice "n"
D_n	Diodo de índice "n"
D_{rn}	Diodo ressonante de índice "n"
f_{cr}	Frequência de cruzamento
f_o	Frequência de ressonância
f_{p1}	Freqüência do 1º pólo do compensador de tensão

Símbolo	Significado
f_{p2}	Frequência do 2º pólo do compensador de tensão
f_s	Freqüência de chaveamento dos interruptores
f_{z1}	Freqüência do 1º zero do compensador de tensão
f_{z2}	Freqüência do 2º zero do compensador de tensão
Fm	Modulador
$FTLA_{cc}(s)$	Função de transferência de laço aberto sem compensador
FTMA(s)	Função de transferência de malha aberta
G	Ganho estático do conversor
G(s)	Função de transferência da planta
H(s)	Função de transferência do transdutor
I_a	Nível alto da corrente que circula em L _{b1} ou L _{b2}
I_b	Nível baixo da corrente que circula em L _{b1} ou L _{b2}
i_{Crn}	Corrente no capacitor equivalente "n"
$I^2_{Db2ef\Delta T1}$	Corrente eficaz que circula no diodo D_{b2} no intervalo $\Delta T1$
$I_{Db2ef\Delta T14}^{2}$	Corrente eficaz que circula no diodo D_{b2} no intervalo $\Delta T14$
$\frac{I_{Db2ef\Delta T1}^2}{I_{in}^2}$	Corrente eficaz normalizada com I_{in} que circula no diodo D_{b2} no intervalo $\Delta T1$
$\frac{I_{Db2ef\Delta T14}^2}{I_{in}^2}$	Corrente eficaz normalizada com I_{in} que circula no diodo D_{b2} no intervalo $\Delta T14$
$\frac{I_{Db2ef}}{I_{in}}$	Corrente eficaz normalizada com I_{in} que circula no diodo D_{b2}
$I_{Db2med riangle T1}$	Corrente média que circula no diodo D _{b2} no intervalo ΔT1
$I_{Db2med riangle T14}$	Corrente média que circula no diodo D _{b2} no intervalo ΔT14
$rac{I_{Db2med\Delta T1}}{I_{in}}$	Corrente média normalizada com I_{in} que circula no diodo D_{b2} no intervalo $\Delta T1$
$rac{I_{Db2med\Delta T14}}{I_{in}}$	Corrente média normalizada com I_{in} que circula no diodo D_{b2} no intervalo $\Delta T14$
$rac{I_{Db2med}}{I_{in}}$	Corrente média normalizada com I_{in} que circula no diodo D_{b2}
I_{Db2max}	Corrente máxima que circula pelo diodo D _{b2}
$\frac{I_{Db2\mathrm{max}}}{I_{in}}$	Corrente máxima que circula pelo diodo D_{b2} normalizada com I_{in}
$I_{\mathit{Db2}_{\mathit{med}}}$	Corrente média que circula no diodo D _{b2}
$I_{\it ef}^2$	Corrente eficaz

Símbolo	Significado
I_{in}	Corrente de entrada do conversor
I_o	Corrente de saída do conversor
$i_{o_{med}}$	Corrente média de saída do conversor
$I_{\it D4ef}^2$	Corrente eficaz no diodo D ₄
$\frac{I_{D4ef}}{I_{in}}$	Corrente eficaz normalizada com I _{in} no diodo D ₄
I_{D4med}	Corrente média no diodo D ₄
$rac{I_{D4med}}{I_{in}}$	Corrente média normalizada com I _{in} no diodo D ₄
I_{D4max}	Corrente máxima que circula pelo diodo D ₄
$rac{I_{D4\mathrm{max}}}{I_{in}}$	Corrente máxima normalizada com I _{in} que circula pelo diodo D ₄
$i_{Db2_{med}}$	Corrente média no diodo D _{b2}
$i_{Db2_{med(1^\circ)}}$	Corrente média no diodo D _{b2} no 1° estágio
$i_{Db2_{med(14^\circ)}}$	Corrente média no diodo D _{b2} no 14° estágio
i_{Lbn}	Corrente no indutor <i>boost</i> de alto ganho de índice "n"
i_{Lrn}	Corrente no indutor de ressonância de índice "n"
$I_{Lb1_mag_pico}$	Corrente de magnetização de pico no indutor
I_{Lb1_rms}	Corrente rms no indutor
I_{Lbn}	Corrente no indutor <i>boost</i> de índice "n"
I_{Lrn}	Corrente ressonante no indutor de índice "n"
I_{med}	Corrente média
$I_{\mathit{med}_{\mathit{Db}1}}$	Corrente média no diodo D _{b1}
$I_{\mathit{med}_{D1}}$	Corrente média no diodo D ₁
I_{pico} ,	Corrente de pico utilizada para calculo do indutor ressonante
I_{rms} ,	Corrente rms utilizada para calculo do indutor ressonante
$I_{Sa2ef\Delta T1}^2$	Corrente eficaz que circula pela chave auxiliar S_{a2} no intervalo de tempo $\Delta T1$
$I_{Sa2ef\Delta T2}^2$	Corrente eficaz que circula pela chave auxiliar S_{a2} no intervalo de tempo $\Delta T2$
$I_{Sa2ef\Delta T3}^2$	Corrente eficaz que circula pela chave auxiliar S_{a2} no intervalo de tempo $\Delta T3$
$\frac{I_{Sa2ef\Delta T1}^2}{I_{in}^2}$	Corrente eficaz normalizada com I_{in} que circula na chave auxiliar S_{a2} no intervalo $\Delta T1$

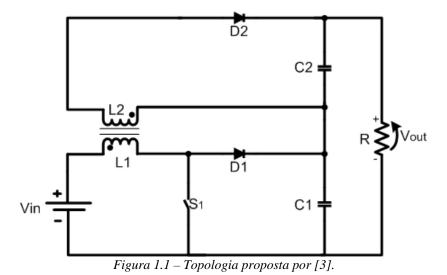
Símbolo	Significado
$\frac{I_{Sa2ef\Delta T2}^2}{I_{in}^2}$	Corrente eficaz normalizada com $I_{\rm in}$ que circula na chave auxiliar S_{a2} no intervalo $\Delta T2$
$\frac{I_{Sa2ef\Delta T3}^2}{I_{in}^2}$	Corrente eficaz normalizada com I_{in} que circula na chave auxiliar S_{a2} no intervalo $\Delta T3$
$\frac{I_{\textit{Sa2ef}}}{I_{\textit{in}}}$	Corrente média normalizada com I_{in} que circula na chave auxiliar S_{a2}
I_{Sa2max}	Corrente máxima que circula pela chave auxiliar S_{a2}
$\frac{I_{Sa2\max}}{I_{in}}$	Corrente máxima normalizada com I_{in} que circula pela chave auxiliar S_{a2}
$I_{Sa2med arDelta T1}$	Corrente média que circula pela chave auxiliar S_{a2} no intervalo de tempo $\Delta T1$
$I_{Sa2med arDelta T2}$	Corrente média que circula pela chave auxiliar S_{a2} no intervalo de tempo $\Delta T2$
$I_{Sa2med arDelta T3}$	Corrente média que circula pela chave auxiliar S_{a2} no intervalo de tempo $\Delta T3$
$rac{I_{Sa2med\Delta T1}}{I_{in}}$	Corrente média normalizada com I_{in} que circula na chave auxiliar S_{a2} no intervalo $\Delta T1$
$\frac{I_{Sa2med\Delta T2}}{I_{in}}$	Corrente média normalizada com I_{in} que circula na chave auxiliar S_{a2} no intervalo $\Delta T2$
$rac{I_{Sa2med\Delta T3}}{I_{in}}$	Corrente média normalizada com I_{in} que circula na chave auxiliar S_{a2} no intervalo $\Delta T3$
$rac{I_{Sa2med}}{I_{in}}$	Corrente média normalizada com I_{in} que circula na chave auxiliar S_{a2}
I_{S2med}	Corrente média que circula pela chave principal S ₂
I_{S2max}	Corrente média que circula pela chave principal S ₂
$\frac{I_{S2\max}}{I_{in}}$	Corrente máxima normalizada com I_{in} que circula pela chave principal S_2
$rac{I_{S2med}}{I_{in}}$	Corrente média normalizada com I_{in} que circula pela chave principal S_2
I_{S2ef}^2	Corrente eficaz que circula pela chave principal S ₂
$\frac{I_{S2ef}}{I_{in}}$	Corrente eficaz normalizada com I_{in} que circula pela chave principal S_2
J_{max}	Densidade máxima de corrente
K	Constante para simplificação de cálculos
K_1	Relação entre a frequência de chaveamento e a frequência de ressonância
k_u	Fator de utilização do núcleo magnético
k_u '	Fator de utilização do núcleo magnético dos indutores ressonantes

Símbolo	Significado
l_g	Entreferro do núcleo magnético utilizado no indutor do <i>boost</i> de alto ganho
l_g	Entreferro do núcleo magnético utilizado no indutor ressonante
L_1	Valor da indutância secundária do transformador L_{b1}/L_{1}
L_2	Valor da indutância secundária do transformador L _{b2} /L ₂
$L_{B1}L_{b1}$	Valor da indutância primária do transformador L_{b1}/L_1
L_{b2}	Valor da indutância primária do transformador L _{b2} /L ₂
L_{rn}	Indutor ressonante de índice "n"
M	Valor da indutância mútua
n	Relação de transformação entre dois indutores acoplados
N_L	Número de espiras calculado para o indutor do boost de alto ganho
N_L '	Número de espiras calculado para o indutor ressonante
n_w	Número de fios em paralelo
n_w '	Número de fios em paralelo do indutor ressonante
P_{in}	Potência média de entrada do conversor
P_o	Potência média de saída do conversor
S_n	Chave principal de índice "n"
S_{an}	Chave auxiliar de índice "n"
S_w	Área necessária para condução de corrente
S_w '	Área necessária para condução de corrente do indutor ressonante
S_{w_AWG19}	Área de cobre do fio AWG19
$S_{w_iso_AWG19}$	Área com isolamento do fio AWG19
S_{w_AWG22}	Área de cobre do fio AWG22
$S_{w_iso_AWG22}$	Área com isolamento do fio AWG22
t_{on}	Instante alto do pulso obtido no SG3525
t_{on} '	Instante em que as chaves principais permanecem ligadas
$t_{o\!f\!f}$	Instante baixo do pulso obtido no SG3525
t_{off} '	Instante em que as chaves principais permanecem desligadas
t_0	Instante de início da primeira etapa de operação
t_1	Instante ao fim da primeira etapa de operação
t_2	Instante ao fim da segunda etapa de operação
t_3	Instante ao fim da terceira etapa de operação
t_4	Instante ao fim da quarta etapa de operação

Símbolo	Significado
t_5	Instante ao fim da quinta etapa de operação
t_6	Instante ao fim da sexta etapa de operação
t_7	Instante ao fim da sétima etapa de operação
T_s	Período de chaveamento
v_c	Tensão de controle
V_c	Tensão de controle
v_{Crn}	Tensão sobre o capacitor ressonante de índice "n"
v_{Lrn}	Tensão sobre o indutor ressonante de índice "n"
V_{Boost}	Tensão sobre do <i>boost</i> convencional
$V_{BoostAG}$	Tensão sobre do <i>boost</i> de alto ganho
V_{cc}	Tensão de corrente contínua
V_{CFn}	Tensão sobre o capacitor de índice "n"
v_{Crn}	Tensão sobre o capacitor equivalente de índice "n"
V_{D4max}	Tensão máxima sobre o diodo D ₄
V_{Db2max}	Tensão máxima sobre o diodo D _{B2}
V_{Sa2max}	Tensão máxima sobre a chave auxilia S _{a2}
V_{S2max}	Tensão máxima sobre a chave principal S ₂
V_e	Volume do núcleo de ferrite
V_{e} ,	Volume do núcleo de ferrite do indutor ressonante
V_{in}	Tensão de entrada do conversor
V_o	Tensão de saída do conversor
V_{GS1}	Tensão de <i>gate-source</i> da chave principal S ₁
V_{GS2}	Tensão de <i>gate-source</i> da chave principal S ₂
V_{GSa1}	Tensão de gate-source da chave principal S _{a1}
V_{GSa2}	Tensão de gate-source da chave principal S _{a2}
V_{ref}	Tensão de referência
X_n	Relação entre os capacitores ressonantes de índice "n"
Z_{on}	Impedância de ressonância de índice "n"
Z_{ony}	Impedância de ressonância de índice "ny"

Acrônimos e Abreviaturas:

Símbolo	Significado
FUNCAP	Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico
CA	Corrente Alternada
CC	Corrente Contínua
MOSFET	Metal-Oxide-Semiconductor Field-Effect Transistor
PID	Proporcional Integral Derivativo
PWM	Pulse Width Modulation
RMS	Root Mean Square
UFC	Universidade Federal do Ceará
ZCS	Zero Currente Switching
ZVS	Zero Voltage Switching


INTRODUÇÃO

Diferentes aplicações tecnológicas fazem o uso dos mais diversos níveis de tensões contínuas. Para se obter estes diferentes níveis de tensões, a Eletrônica de Potência vem sendo desenvolvida a fim de obter novas topologias de conversores. Na literatura existem inúmeros circuitos que realizam uma conversão CC/CC, derivados basicamente de seis estruturas: *buck*, *boost*, *buck-boost*, *cúk*, *sepic*, *zeta* [1].

Nos conversores elevadores de tensão, a tensão média de saída é maior que a tensão de entrada. Todavia, as configurações convencionais não são capazes de oferecer um ganho tão alto quanto o exigido por alguns sistemas, no qual a tensão na saída é cerca de cinco a dez vezes maior que a tensão de entrada, visto que, ao operar com razão cíclica elevada, o conversor tende à instabilidade.

O desafio de gerar um barramento de saída de alta tensão, 180Vdc a 400Vdc, geralmente utilizados para alimentar inversores, sistemas UPS, entre outros, a partir de um baixo nível de tensão de entrada, 12Vdc a 48Vdc, vem sendo estudado a alguns anos, gerando diversas propostas que visam superar tal dificuldade [2].

Em [3], [4] e [5] são apresentados conversores com elevado ganho estático baseados na topologia *boost-flyback*, como o observado na Figura 1.1. A vantagem desta configuração é o baixo esforço de tensão sobre a chave, enquanto a desvantagem é a que este conversor apresenta uma corrente de entrada pulsada, sendo necessário um filtro LC.

Em [6] e [7] foi proposto um conversor elevador de alto ganho utilizando capacitores chaveados, que proporciona um ganho de tensão cerca de três vezes a tensão de entrada utili-

zando o acoplamento magnético. No entanto essa topologia, observada na Figura 1.2, é adequada apenas para baixas potências, além de resultar em um grande esforço de tensão sobre as chaves, fazendo-se necessário o uso de muitos capacitores.

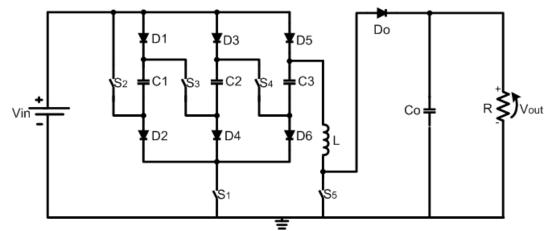


Figura 1.2 – Topologia proposta por [6].

O conversor *boost* proposto por [8] apresenta baixa ondulação na corrente de entrada e poucos esforços de tensão sobre as chaves. No entanto, para potências elevadas, flui uma alta corrente através dos capacitores em série. Este conversor é observado na Figura 1.3.

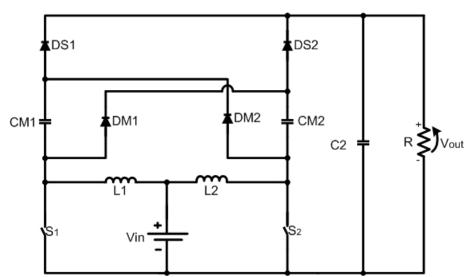


Figura 1.3 – Configuração proposta por [8].

Os trabalhos desenvolvidos em [9], [10], [11] apresentam as topologias da célula de comutação de três estados. O conversor introduzido em [10], tem como vantagem a corrente de entrada, que não é pulsada e possui baixa ondulação, além do indutor de entrada operar com o dobro da freqüência de chaveamento, permitindo a redução do peso e volume. A presença de mais de uma chave faz com que os esforços de tensão sobre estas sejam menores do que a metade da tensão de saída e naturalmente grampeada pelo capacitor de filtro de saída,

permitindo a utilização de um MOSFET com baixa resistência série, melhorando sua eficiência. Como desvantagem, o conversor não funcionará adequadamente para um ciclo de trabalho inferior a 0.5, devido a problemas com a indução magnética do transformador. Em [11] foi proposto um conversor no qual a elevação da tensão de saída é obtida utilizando uma célula multiplicadora de tensão. A Figura 1.4, a Figura 1.5 e a Figura 1.6 apresentam respectivamente os circuitos propostos nestes artigos.

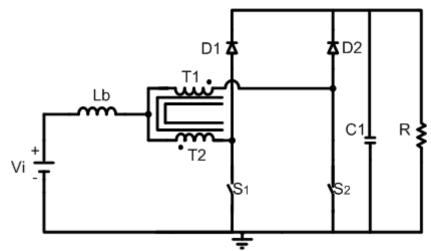


Figura 1.4 – Célula de três estados proposta por [9].

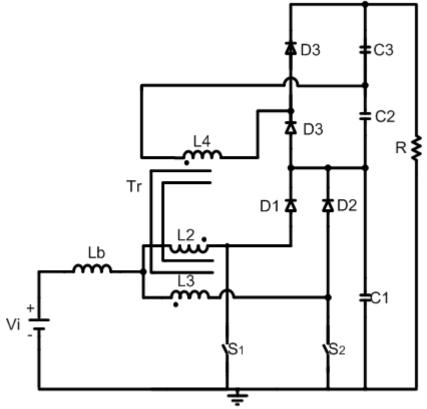


Figura 1.5 – Célula de três estados proposta por [10].

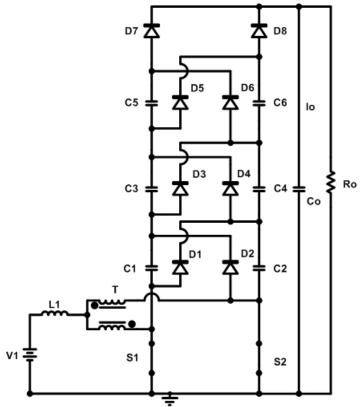
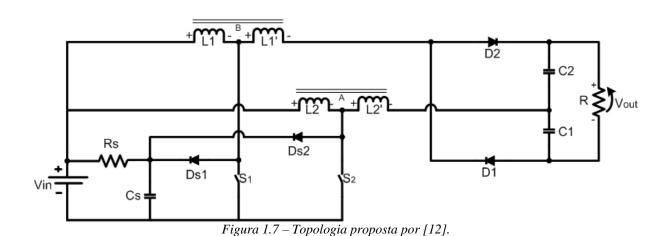



Figura 1.6 – Célula de três estados proposta por [11].

A topologia observada na Figura 1.7 foi apresentada por [12]. Um dobrador de tensão foi empregado como estágio de saída de um conversor *boost* entrelaçado com indutores acoplados.

Em [2] e [13] é apresentado um conversor *boost* intercalado com alto ganho de tensão, observado na Figura 1.8. Este conversor opera no modo contínuo de corrente. As chaves S₁ e S₂ podem operar com comutação ZCS devido à indutância de dispersão e em modo de condução descontínua (DCM) durante o primeiro e o terceiro estágios de operação. Embora os indutores operem em DCM, a corrente de entrada mantém-se em modo contínuo. No entanto, para

cargas elevadas este conversor não apresenta mais a comutação ZCS. Este conversor apresenta desequilíbrio de correntes nos indutores.

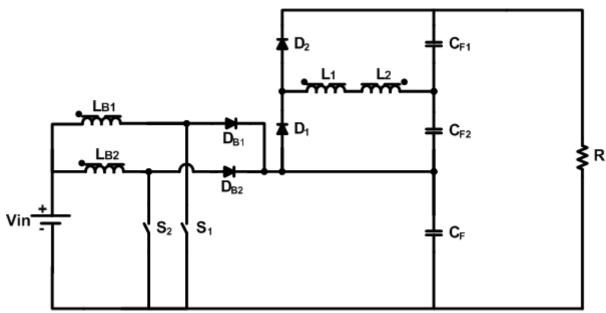


Figura 1.8 – Conversor boost de alto ganho.

Em geral, as chaves dos conversores que não possuem células de comutação suave são comandadas de modo que entrem e saiam de condução com toda corrente de carga. Desta forma as chaves são submetidas a elevadas tensões e/ou correntes e consequentemente ocorrem perdas no chaveamento devido às comutações, as quais aumentam linearmente com o aumento da freqüência de chaveamento.

A busca incessante pela otimização dos projetos e de configurações que operem com reduzidas perdas, seja por condução ou por comutação, faz com que novas configurações sejam desenvolvidas.

Com o surgimento dos transistores bipolares de potência e, posteriormente, dos MOS-FETs, percebeu-se que a comutação suave reduzia as perdas por comutação melhorando, assim, o rendimento dos conversores além de permitir a operação das chaves em freqüências superiores às obtidas em circuitos convencionais [14].

Utilizando células ressonantes, a comutação ocorre sob tensão nula (ZVS - Zero Voltage Switching), e/ou sob corrente nula (ZCS - Zero Current Switching), tornando a comutação não-dissipativa e possibilitando a elevação da freqüência de chaveamento, colocando-a na ordem de centenas de kHz.

Os conversores com comutação suave são adequados para sistemas de processamento de energia solar pelo fato de apresentarem um alto rendimento e operar com freqüência de comutação elevada e com alta eficiência, na faixa de 97%. Por esses motivos, estes converso-

res são de alta densidade de potência, ou seja, há uma diminuição do tamanho e peso dos componentes, transformadores e dissipadores para uma mesma potência, quando comparado a conversor convencional. A diferença entre os rendimentos para o chaveamento suave e o dissipativo aumenta com o acréscimo da freqüência de chaveamento [15]

Em [14] é apresentado um conversor *boost* que utiliza célula de comutação nãodissipativa "Self-Ressonant Zero Current and Zero Voltage Switching Pulse Width Modulation" (SR-ZCS-ZVS-PWM). Esta configuração, observada na Figura 1.9, garante a operação com comutação não-dissipativa das chaves S₁, comandada para fechar e abrir sob tensão nula, e a chave auxiliar S₂, que é comandada para fechar com corrente nula e para abrir com corrente e tensão nulas. A grande vantagem deste circuito é que a célula permite elevar a eficiência operacional do sistema, além de reduzir as interferências eletromagnéticas (EMI). Este circuito possui freqüência de chaveamento fixa. Como desvantagem, esta célula necessita da implementação de um circuito auxiliar para isolar o pulso que servirá de acionamento da chave auxiliar, pois esta não possui uma malha de terra comum com o resto do circuito.

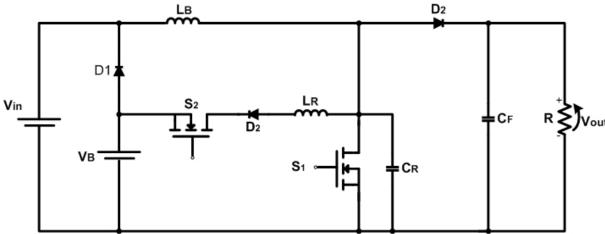


Figura 1.9 – Conversor boost com célula SR-ZCS-ZVS-PWM.

Em [16] foi proposta a utilização de uma nova célula *soft switching* ativa e a adição de dois circuitos auxiliares de comutação ao conversor *interleaved boost* para minimização dos efeitos causados pelo chaveamento em modo *hard*. No circuito proposto são: as chaves principais ligadas em ZCS e desligadas em ZVS, enquanto as chaves do circuito auxiliar não causam tensão extra nas chaves principais. Além disso, não há necessidade da adição de um indutor extra no circuito auxiliar, o que o torna bastante simples. A Figura 1.10 mostra o circuito *soft switching* ativo para o conversor *interleaved boost* proposto, onde os indutores L₁ e L₂ estão magneticamente acoplados.

De acordo com a teoria de circuitos, os indutores acoplados podem ser representados por um circuito equivalente com três indutores desacoplados, como mostrado na Figura 1.11.

As vantagens desta topologia são:

- Todos os semicondutores trabalham em soft switching.
- Não requer adição de indutores extras no circuito auxiliar.
- Redução da corrente de recuperação reversa do diodo.

As desvantagens são:

- Adição de duas chaves auxiliares torna o circuito complexo e o circuito mais difícil de ser implementado.
 - Presença de corrente de circulação.
 - Aumento nas perdas por condução.

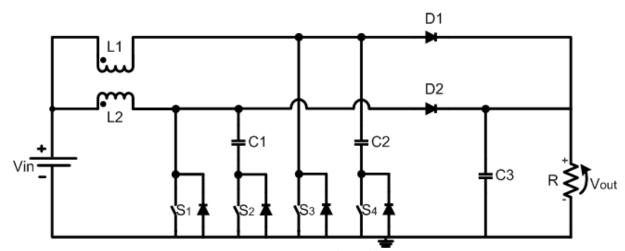


Figura 1.10 - Conversor interleaved boost ZCS-ZVS.

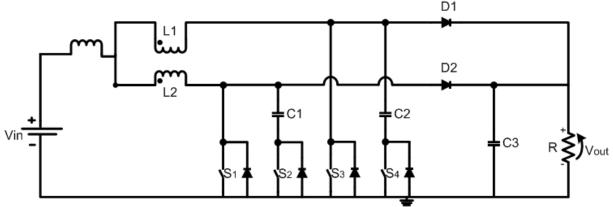


Figura 1.11 – Circuito equivalente do conversor.

Em [17] é apresentado um conversor *boost* convencional, associado a uma célula de comutação não-dissipativa. Este conversor, observado na Figura 1.12, atua como estágio elevador de tensão para o inversor de saída de uma UPS e apresenta vantagens de operar em lar-

ga escala de tensão, apresenta eficiência elevada e alta potência, além do circuito ressonante possuir "terra" comum com o resto do circuito. O diodo em série com a chave faz com que as perdas por condução sejam maiores.

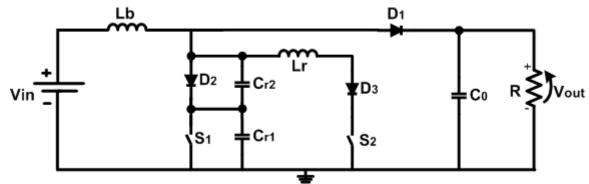


Figura 1.12 – Conversor boost associado com snubber não-dissipativo.

Assim, este trabalho tem por objetivo analisar, projetar e implementar uma célula de comutação suave, como a proposta em [17], Figura 1.14, para solucionar o problema das perdas por comutação do conversor *boost* de alto ganho proposto em [2], Figura 1.13. Este conversor apresenta as seguintes especificações: tensão de entrada 28Vcc, freqüência de chaveamento 50kHz e tensão na saída 180Vcc.

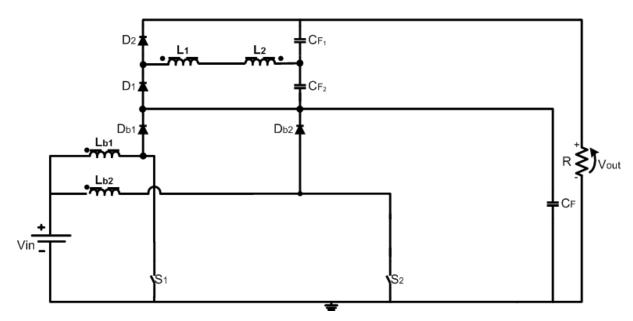


Figura 1.13 – Configuração de conversor escolhida.

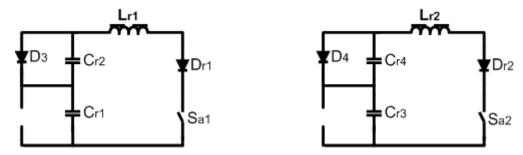


Figura 1.14 – Configuração de célula de comutação suave escolhida.

A escolha do conversor e da célula de comutação suave resulta na seguinte configuração:

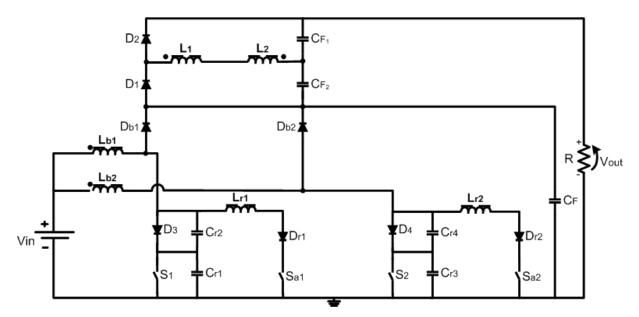


Figura 1.15 – Conversor boost de alto ganho utilizando célula de comutação suave.

No capítulo 2 é feita a análise qualitativa, onde são apresentados o principio de funcionamento do conversor proposto, bem como sua análise quantitativa, onde são desenvolvidos os modelos matemáticos.

A estratégia de controle para malha fechada, operando com ciclo de chaveamento variável, permite a manutenção da tensão no barramento de saída em um nível estável, é apresentada no capitulo 3. O controle será totalmente digital reduzindo assim o número de componentes. O dispositivo utilizado é o PIC16F877A do fabricante Microship [18], utilizado para gerar o sinal de controle.

No capitulo 4 são apresentados os resultados de simulação e experimentais para um conversor de 500W, de onde se pode verificar e comprovar a eficiência da célula de comutação suave aplicada aos interruptores ativos.

Ao final da dissertação são apresentadas as conclusões e algumas sugestões para trabalhos futuros, presentes no capítulo 5.

Nos apêndices são apresentados os esquemáticos de controle e de potência, assim como, os cálculos dos componentes do protótipo.

CAPÍTULO 2

ANÁLISES QUALITATIVA E QUANTITATIVA DO CONVERSOR *BOOST* DE ALTO GANHO UTILIZANDO CÉLULAS DE CO-MUTAÇÃO SUAVE

2.1 - CONSIDERAÇÕES INICIAIS

Este capítulo apresenta as análises qualitativa e quantitativa do conversor proposto. A análise qualitativa representa a exposição do princípio de funcionamento do conversor, assim como suas respectivas etapas de funcionamento, formas de onda e detalhes de comutação. A análise quantitativa serve como base para o desenvolvimento do projeto completo do conversor.

São realizados os cálculos dos intervalos de tempo de cada etapa de operação em um período de funcionamento. Em seguida é traçado o gráfico representativo do funcionamento do conversor, a fim de simplificar seu projeto. Por fim, será obtido o ganho estático para o conversor.

2.2 - ANÁLISE QUALITATIVA DO CONVERSOR *BOOST* DE ALTO GANHO UTILIZANDO CÉLULAS DE COMUTAÇÃO SUAVE

A Figura 2.1 apresenta o circuito do conversor *boost* de alto ganho utilizando células de comutação suave. Este conversor opera sem perdas por comutação.

Todas as chaves, S_1 , S_2 , S_{a1} e S_{a2} , operam com comutação suave. As principais, S_1 e S_2 , operam em modo ZVS, enquanto as auxiliares, S_{a1} e S_{a2} , operam em modo ZCS.

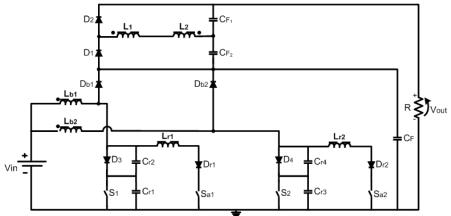
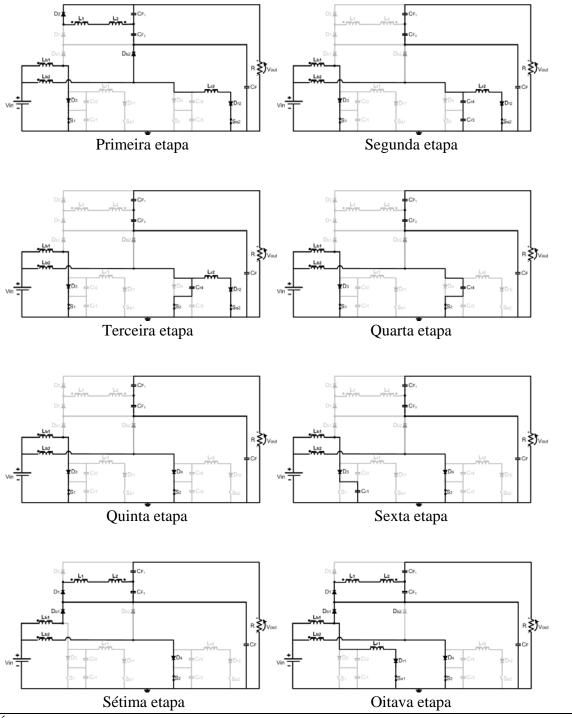



Figura 2.1 – Conversor boost de alto ganho utilizando células de comutação suave.

2.2.1 - PRINCÍPIO DE OPERAÇÃO

O conversor apresenta quatorze estágios de operação, conforme é visualizado na Figura 2.2. Será apresentada uma análise teórica apenas de sete estágios de operação, isto é, meio ciclo de chaveamento, pois o conversor é simétrico.

Deve-se considerar que o capacitor ressonante 3 (C_{r3}) está carregado com a tensão V_{CF} antes do início do primeiro estágio de operação.

CAPÍTULO 2 – Análise Qualitativa e Quantitativa do Conversor *Boost* de Alto Ganho Utilizando Células de comutação suave.

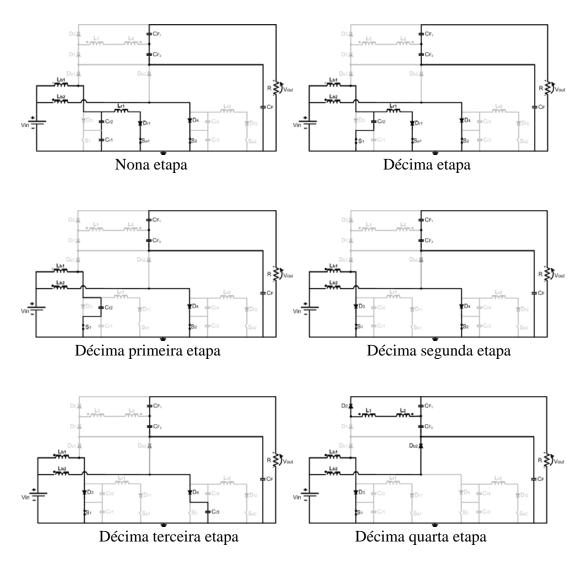


Figura 2.2 -Estágios de operação.

Primeiro estágio $[t_0, t_1]$ – (Figura 2.3). Considera-se que no início deste estágio, S_1 e D_3 estão conduzindo, L_{b1} está armazenando energia e V_{Cr1} e V_{Cr2} são iguais a zero. Este estágio começa quando S_{a2} e D_{r2} entram em condução em modo ZCS, devido ao indutor L_{r2} em série. Durante este estágio, a corrente ressonante do indutor L_{r2} cresce linearmente de zero até a corrente no indutor L_{b2} , fazendo com que o diodo D_{b2} saia de condução em modo ZCS. Este estágio termina quando $I_{Lr2} = I_{Lb2}$.

<u>Segundo estágio [t_1 , t_2]</u> – (Figura 2.4). Quando a corrente ressonante do indutor L_{r2} é igual à corrente do indutor L_{b2} , este estágio se inicia. Durante este estágio, ocorre a ressonância entre os capacitores C_{r3} , C_{r4} e o indutor L_{r2} , ocasionando o descarregamento do capacitor C_{r3} e o carregamento do capacitor C_{r4} . Este estágio termina quando o capacitor C_{r3} está completamente descarregado.

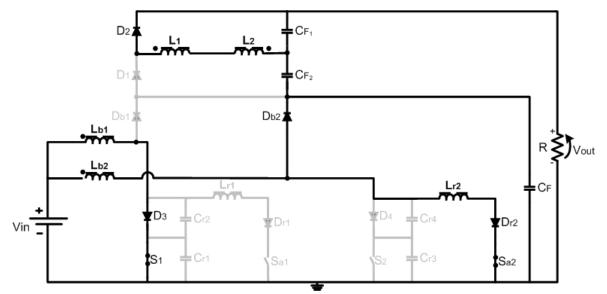


Figura 2.3 – Primeiro estágio.

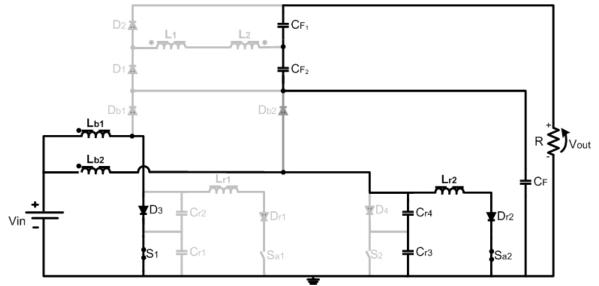


Figura 2.4 – Segundo estágio.

<u>Terceiro estágio $[t_2, t_3]$ </u> – (Figura 2.5). Este estágio inicia-se quando a tensão no capacitor C_{r3} é igual à zero. Durante este estágio, apenas C_{r4} está em ressonância com o indutor L_{r2} . Este estágio termina quanto I_{Lr2} é igual à zero. A chave principal S_2 entra em condução em modo ZVS, durante este estágio.

<u>Quarto estágio [t₃, t₄]</u> – (Figura 2.6). Este estágio começa quando I_{Lr2} é igual à zero, fazendo com que a chave auxiliar S_{a2} seja desligada em modo ZCS. As chaves S_1 e S_2 permanecem ligadas e a energia continua a ser armazenada em L_{b1} , sem ser transferida à carga, enquanto L_{b2} é descarregado. Além disso, o capacitor ressonante C_{r4} é linearmente descarregado até zero pela corrente I_{Lb2} . Este estágio termina quando a tensão no capacitor C_{r4} é igual à zero.

Figura 2.5 – Terceiro estágio.

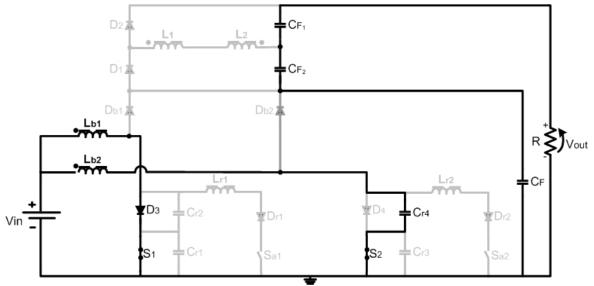


Figura 2.6 – Quarto estágio.

<u>Quinto estágio [t_4 , t_5]</u> – (Figura 2.7). Este estágio é iniciado quando a tensão no capacitor C_{r4} é igual à zero, colocando o diodo D_4 em condução em modo ZVS. Durante este estágio, a energia fornecida pela fonte V_{in} é armazenada nos indutores L_{b1} e L_{b2} . Este estágio termina quando S_1 é desligada em modo ZVS.

<u>Sexto estágio [t_5 , t_6]</u> – (Figura 2.8). Este estágio começa quando a chave principal S_1 é desligada no modo ZVS. A corrente I_{Lb1} circula pelo capacitor ressonante 1 (C_{r1}), que é carregado até que sua tensão se iguale a V_{CF} . Isso faz o diodo D_3 saia de condução em modo ZVS. Este estágio termina quando o diodo D_{b1} entra em condução, em modo ZVS.

<u>Sétimo estágio $[t_6, t_7]$ </u> – (Figura 2.9). Durante este estágio D_{b1} começa a conduzir e a energia armazenada em L_{b1} é transferida ao capacitor C_{F2} .

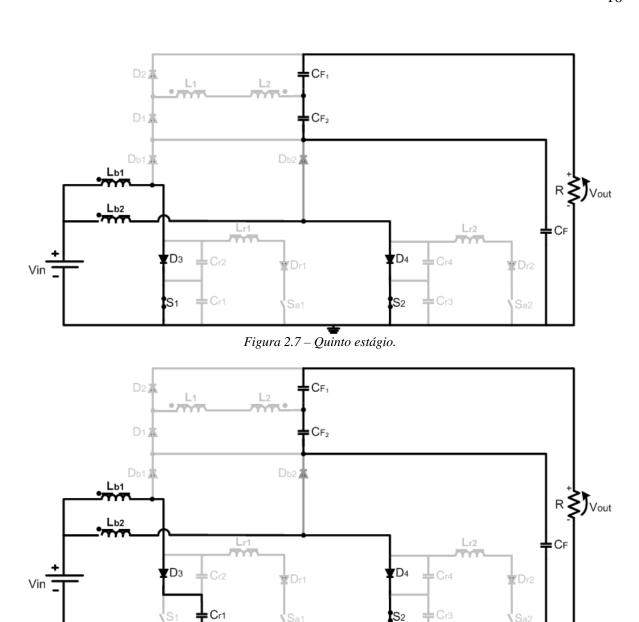
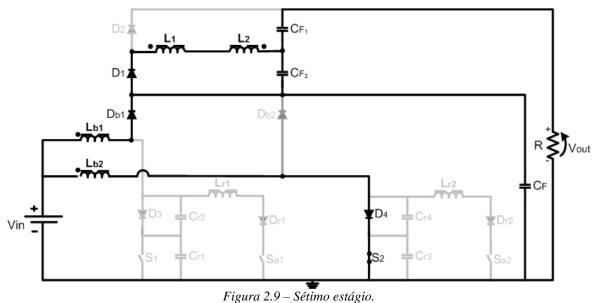
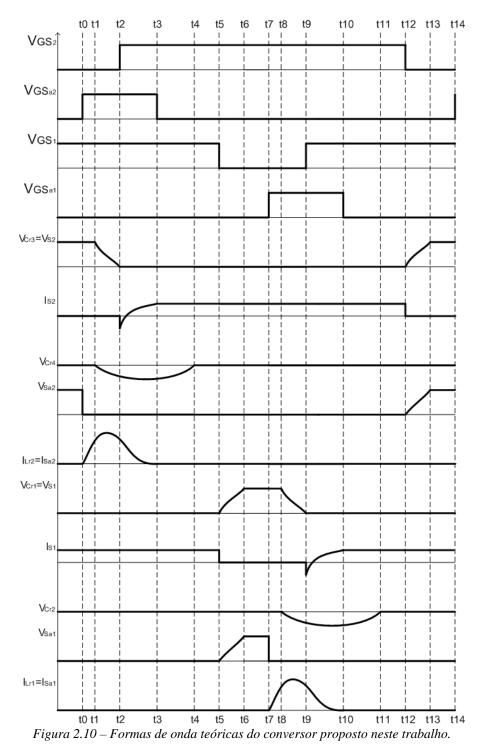



Figura 2.8 – Sexto estágio.

Sat


S2

CAPÍTULO 2 - Análise Qualitativa e Quantitativa do Conversor Boost de Alto Ganho Utilizando Células de comutação suave.

2.2.2 - FORMAS DE ONDA TEÓRICAS DO CONVERSOR

A Figura 2.10 apresenta as principais formas de ondas teóricas do conversor operando em modo de condução contínua, onde são apresentadas as formas de onda da tensão *gatesource* das chaves S_1 , S_2 , S_{a1} e S_{a2} , tensão nos capacitores ressonantes v_{Cr1} , v_{Cr2} , v_{Cr3} e v_{Cr4} e tensão e corrente as chaves S_1 , S_2 , S_{a1} e S_{a2} .

CAPÍTULO 2 – Análise Qualitativa e Quantitativa do Conversor *Boost* de Alto Ganho Utilizando Células de comutação suave.

2.3 - ANÁLISE QUANTITATIVA DA CÉLULA DE COMUTAÇÃO SUAVE APLICADA AO CONVERSOR *BOOST* DE ALTO GANHO

Neste item, são estudadas as características do conversor com um foco quantitativo, baseando-se no desenvolvimento da análise qualitativa. São calculados os intervalos de tempo (ΔT_n) referentes aos sete estágios de operação do conversor *boost* de alto ganho que utiliza células de comutação suave.

Por fim é apresentada a expressão que determina o ganho estático do conversor, que é a relação entre a tensão de entrada e a tensão de saída com o conversor operando em regime permanente.

Para facilitar a realização dos cálculos e complementar as características assumidas anteriormente, serão adotadas as seguintes considerações sobre os dispositivos, ativos e passivos, utilizados no desenvolvimento dos equacionamentos:

- todos os componentes são considerados ideais;
- a fonte de tensão de entrada associada aos indutores são fontes de corrente ideal;
- a carga é uma fonte de tensão ideal.
- Assim como em [17] e [19], tem-se por definição que:

 X_a e X_b é a relação entre os capacitores ressonantes:

$$C_{r2} = X_a \cdot C_{r1} \tag{2.1}$$

$$C_{r4} = X_b \cdot C_{r3} \tag{2.2}$$

 C_{ra} e C_{rb} são capacitores em série dados por:

$$\frac{1}{C_{rq}} = \frac{1}{C_{r1}} + \frac{1}{C_{r2}} \tag{2.3}$$

$$\frac{1}{C_{rb}} = \frac{1}{C_{r3}} + \frac{1}{C_{r4}} \tag{2.4}$$

Substituindo (2.1) em (2.3), e (2.2) em (2.4):

$$C_{r1} = \frac{X_a + 1}{X_a} \cdot C_{ra} \tag{2.5}$$

$$C_{r3} = \frac{X_b + 1}{X_b} \cdot C_{rb} \tag{2.6}$$

Substituindo (2.5) em (2.1), e (2.6) em (2.2), tem-se:

$$C_{r2} = (X_a + 1) \cdot C_{ra} \tag{2.7}$$

$$C_{r4} = (X_b + 1) \cdot C_{rb} \tag{2.8}$$

A frequência angular de chaveamento e a frequência angular de ressonância são dadas respectivamente por:

$$\omega_{s} = 2 \cdot \pi \cdot f_{s} \tag{2.9}$$

$$\omega_o = 2 \cdot \pi \cdot f_o \tag{2.10}$$

A frequência de ressonância é uma característica do circuito de ressonância que pode ser expressa em ciclos por segundo, Hetz ou radianos:

$$\omega_{oa} = \frac{1}{\sqrt{L_{r1} \cdot C_{ra}}} \tag{2.11}$$

$$\omega_{oa1} = \frac{1}{\sqrt{L_{r1} \cdot C_{r1}}} \tag{2.12}$$

$$\omega_{oa2} = \frac{1}{\sqrt{L_{r1} \cdot C_{r2}}}$$
 (2.13)

$$\omega_{ob} = \frac{1}{\sqrt{L_{r2} \cdot C_{rb}}} \tag{2.14}$$

$$\omega_{ob1} = \frac{1}{\sqrt{L_{r2} \cdot C_{r3}}} \tag{2.15}$$

$$\omega_{ob2} = \frac{1}{\sqrt{L_{r2} \cdot C_{r4}}} \tag{2.16}$$

O período de chaveamento é dado por:

$$T_s = \frac{1}{f_s} \tag{2.17}$$

A impedância do circuito ressonante é um parâmetro baseado na indutância e na capacitância de ressonância de cada célula, definido como:

$$Z_{oa} = \sqrt{\frac{L_{r1}}{C_{ra}}} {(2.18)}$$

$$Z_{oa1} = \sqrt{\frac{L_{r1}}{C_{r1}}} \tag{2.19}$$

$$Z_{oa2} = \sqrt{\frac{L_{r1}}{C_{r2}}} \tag{2.20}$$

$$Z_{ob} = \sqrt{\frac{L_{r2}}{C_{rb}}} {(2.21)}$$

$$Z_{ob1} = \sqrt{\frac{L_{r2}}{C_{r3}}} \tag{2.22}$$

$$Z_{ob2} = \sqrt{\frac{L_{r2}}{C_{r4}}} \tag{2.23}$$

A corrente parametrizada é dada por:

$$\alpha_a = \frac{I_{in}}{V_{CF}} \cdot \sqrt{\frac{L_{r1}}{C_{ra}}}$$
 (2.24)

$$\alpha_{a1} = \frac{I_{in}}{V_{CF}} \cdot \sqrt{\frac{L_{r1}}{C_{r1}}}$$

$$(2.25)$$

$$\alpha_{a2} = \frac{I_{in}}{V_{CF}} \cdot \sqrt{\frac{L_{r1}}{C_{r2}}}$$
 (2.26)

$$\alpha_b = \frac{I_{in}}{V_{CF}} \cdot \sqrt{\frac{L_{r2}}{C_{rb}}}$$
 (2.27)

$$\alpha_{b1} = \frac{I_{in}}{V_{CF}} \cdot \sqrt{\frac{L_{r2}}{C_{r3}}}$$
 (2.28)

$$\alpha_{b2} = \frac{I_{in}}{V_{CF}} \cdot \sqrt{\frac{L_{r2}}{C_{r4}}}$$
 (2.29)

A relação entre a frequência de chaveamento e a frequência de ressonância é dada por:

$$K_1 = \frac{f_s}{f_a} \tag{2.30}$$

Para simplificação dos cálculos é utilizada a variável *K* como sendo:

$$K = \left(\frac{-\alpha_b}{2} \cdot \sqrt{\frac{X_b - 1}{X_b + 1}} \pm \sqrt{\frac{1}{X_b} - \frac{{\alpha_b}^2}{4 \cdot (X_b + 1)}}\right)$$
(2.31)

Analisando as corrente que circulam em L_{b1} e L_{b2} , três níveis são obtidos, nomeados de: I_a e I_b os níveis de corrente que circulam pelos indutores quando se tem apenas uma das chaves principais conduzindo e $I_{in}/2$ quando as duas chaves principais estão operando.

$$I_a + I_b = I_{in} (2.32)$$

A corrente média que circula por D_{b2} é dada por:

$$I_{Db2_{med}} = \frac{1}{T_s} \int_{0}^{(1-D)T_s} I_b \cdot dt = I_b \cdot (1-D) = \frac{I_o}{2}$$
 (2.33)

Então, I_b é definido por:

$$I_b = \frac{I_o}{2 \cdot (1 - D)} \tag{2.34}$$

A equação que determina o ganho estático do conversor *boost* de alto ganho, conforme [2] é:

$$G = \frac{V_o}{V_{in}} = \frac{I_{in}}{i_{o_{med}}} = \frac{2 \cdot n + 1}{1 - D}$$
 (2.35)

$$I_o = \frac{I_{in} \cdot (1 - D)}{2 \cdot n + 1} \tag{2.36}$$

Então substituindo (2.34) em (2.36), tem-se:

$$I_b = \frac{I_{in}}{2 \cdot (2 \cdot n + 1)} \tag{2.37}$$

Determinado I_b , I_a é definido por:

$$I_{a} = I_{in} \cdot \left[1 - \frac{1}{2 \cdot (2 \cdot n + 1)} \right]$$
 (2.38)

Na sequência da apresentação, é analisado matematicamente meio ciclo de chaveamento do conversor *boost* de alto ganho utilizando células de comutação suave.

2.3.1 - PRIMEIRO ESTÁGIO [t₀,t₁] – ETAPA LINEAR PARA i_{Lr2}

O circuito equivalente à primeira etapa é mostrado na Figura 2.11.

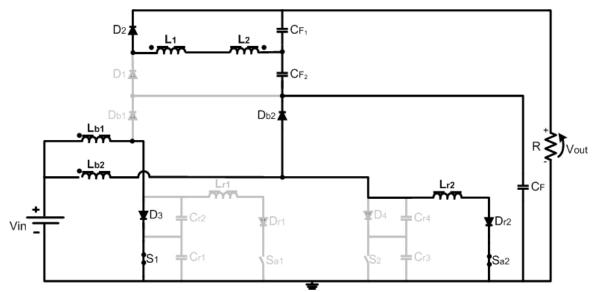


Figura 2.11 – Circuito equivalente da primeira etapa de operação do conversor boost de alto ganho utilizando células de comutação suave.

Nesta etapa de operação, a variável de estado $i_{Lr2}(t)$ possui o seguinte valor inicial:

$$i_{Lr2}(0) = 0 (2.39)$$

Equações válidas durante toda esta etapa:

$$V_{Lr2}(t) = V_{CF} \tag{2.40}$$

$$V_{Cr3}(t) = V_{CF} (2.41)$$

$$v_{Cr4}(t) = 0 (2.42)$$

$$i_{Ib2}(t) = cte (2.43)$$

Ao iniciar a primeira etapa, a chave S_{a2} é colocada em condução na forma ZCS, devido ao indutor L_{r2} . Esta etapa é caracterizada pelo crescimento linear da corrente no indutor ressonante $i_{Lr2}(t)$.

$$i_{Lr2}(t) = i_{Lr2}(0) + i_{Lr2}(t)$$
 (2.44)

$$v_{Lr2}(t) = L_{r2} \cdot \frac{di_{Lr2}(t)}{dt}$$
 (2.45)

Portanto, a expressão que define $i_{Lr2}(t)$ é a seguinte:

$$i_{Lr2}(t) = \frac{V_{CF}}{L_{r2}} \cdot t$$
 (2.46)

Esta etapa termina quando a corrente no indutor ressonante i_{Lr2} é igual à corrente i_{Lb2} que durante esta etapa é I_b .

$$i_{Lr2}(t_1) = I_b \tag{2.47}$$

$$I_b\left(t\right) = \frac{V_{CF}}{L_{r2}} \cdot t \tag{2.48}$$

Substituindo-se as condições finais do indutor de ressonância L_{r2} na equação (2.48), pode-se determinar o intervalo de tempo da primeira etapa, que será representado por ΔT_I :

$$\Delta T_1 = \frac{I_b}{V_{CF}} \cdot L_{r2} \tag{2.49}$$

Multiplicando (2.49) por Z_{ob} , substituindo α_b e em seguida ω_{ob} , tem-se:

$$\Delta T_1 = \frac{\alpha_b}{\omega_{cb}} \cdot \frac{1}{2 \cdot (2 \cdot n + 1)} \tag{2.50}$$

Então, no final desta etapa, tem-se:

$$i_{Lr2}\left(\Delta t_1\right) = I_b \tag{2.51}$$

$$V_{Lr2}\left(\Delta t_1\right) = V_{CF} \tag{2.52}$$

2.3.2 - SEGUNDO ESTÁGIO [t₁,t₂] – PRIMEIRA ETAPA RESSONANTE

O circuito equivalente à segunda etapa de funcionamento é mostrado na Figura 2.12.

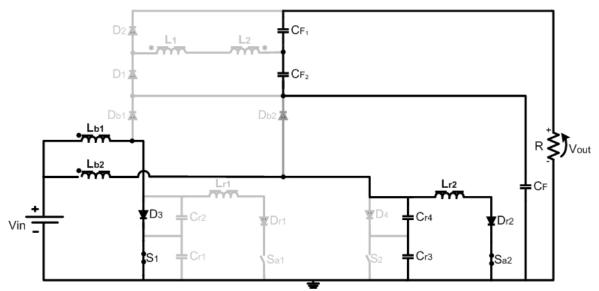


Figura 2.12 – Circuito equivalente da segunda etapa de operação do conversor boost de alto ganho utilizando células de comutação suave.

Devido à transferência de energia para o secundário, o valor inicial desta etapa é diferente do valor final da etapa anterior. Considerando um acoplamento não-ideal entre os indutores, a corrente I_{Lb2} varia de acordo com a dispersão em direção ao valor $I_{in}/2$. A determinação analítica para esta etapa é de difícil solução e extremamente dependente do valor da dispersão. Para fins de simplificação este intervalo será ignorado, sendo então considerado os seguintes valores iniciais para as variáveis de estado $i_{Lr2}(t)$, $v_{Cr3}(t)$, $v_{Cr4}(t)$ e $v_{Crb}(t)$:

$$i_{Lr2}(0) = \frac{I_{in}}{2} \tag{2.53}$$

$$v_{Cr3}(0) = V_{CF} \tag{2.54}$$

$$v_{Cr4}(0) = 0 (2.55)$$

$$V_{Crb}(0) = V_{CF} \tag{2.56}$$

Nesta etapa, inicia-se a ressonância entre os capacitores ressonantes C_{r3} , C_{r4} e o indutor ressonante L_{r2} . Esta etapa é caracterizada pela descarga de C_{r3} e carga de C_{r4} . Considera-se nesta etapa $v_{Crb}(t)$ como a tensão no conjunto de capacitores ressonantes. Resolvendo as equações deste circuito tem-se:

$$i_{Crb}(t) + i_{Lr2}(t) = \frac{I_{in}}{2}$$
 (2.57)

$$i_{Crb}(t) = C_{rb} \cdot \frac{dv_{Crb}(t)}{dt}$$
 (2.58)

Substituindo (2.58) em (2.57), tem-se:

$$i_{Lr2}(t) = -C_{rb} \cdot \frac{dv_{Crb}(t)}{dt} + \frac{I_{in}}{2}$$
 (2.59)

Sendo:

$$v_{Crb}(t) = v_{Lr2}(t) (2.60)$$

$$v_{Lr2}(t) = L_{r2} \cdot \frac{di_{Lr2}(t)}{dt}$$
 (2.61)

Substituindo (2.61) em (2.60), tem-se:

$$v_{Crb}\left(t\right) = L_{r2} \cdot \frac{di_{Lr2}\left(t\right)}{dt} \tag{2.62}$$

Substituindo (2.62) em (2.59) tem-se:

$$i_{Lr2}(t) = -C_{rb}L_{r2} \cdot \frac{d^2i_{Lr2}(t)}{dt^2} + \frac{I_{in}}{2}$$
(2.63)

Aplicando a transformada de Laplace, substituindo ω_{ob} , Z_{ob} e utilizando a transformada inversa de Laplace encontra-se a expressão da corrente que define esta etapa:

$$i_{Lr2}(t) = \frac{I_{in}}{2} + \frac{V_{CF}}{Z_{ob}} \cdot sen(\omega_{ob} \cdot t)$$
(2.64)

A expressão que defina a tensão no conjunto de capacitores ressonantes é encontrada substituindo a equação (2.64) em (2.62):

$$v_{Crb}(t) = V_{CF} \cdot \cos(\omega_{ob} \cdot t) \tag{2.65}$$

Como neste estágio a corrente ressonante $i_{Crb}(t)$ está descarregando C_{r3} , a expressão que define $i_{Crb}(t)$ é encontrada substituindo (2.65) em (2.58) e em seguida Z_{ob} , e dada por:

$$i_{Crb}(t) = -\frac{V_{CF}}{Z_{ob}} \cdot sen(\omega_{ob} \cdot t)$$
(2.66)

As equações que definem as tensões nos capacitores ressonantes são:

$$v_{Cr3}(t) = \frac{V_{CF} \cdot X_b}{X_b + 1} \cdot \left[\cos\left(\omega_{ob} \cdot t\right) - 1\right] + V_{CF}$$
(2.67)

$$v_{Cr4}(t) = \frac{V_{CF}}{X_b + 1} \cdot \left[\cos\left(\omega_{ob} \cdot t\right) - 1\right]$$
(2.68)

Essa etapa termina quando a tensão no capacitor ressonante 3 v_{Cr3} é igual à zero.

$$v_{Cr3}\left(\Delta t_2\right) = 0\tag{2.69}$$

Assim substituindo a condição final do capacitor de ressonância 3 na equação (2.67), pode-se determinar o intervalo de tempo da segunda etapa que é representado por ΔT_2 :

$$\Delta T_2 = \frac{1}{\omega_{ob}} \cdot \arccos\left(-\frac{1}{X_b}\right) \tag{2.70}$$

Substituindo-se (2.70) em (2.64) e em (2.68), tem-se o valor da corrente de ressonância i_{Lr2} e da tensão no capacitor ressonante 4 ($v_{Cr4}(t)$), respectivamente, no final desta etapa:

$$i_{Lr2}(\Delta T_2) = \frac{I_{in}}{2} + \frac{V_{CF}}{Z_{ob}} \cdot \sqrt{\frac{X_b^2 - 1}{X_b^2}}$$
(2.71)

$$v_{Cr3}\left(\Delta T_2\right) = 0\tag{2.72}$$

$$v_{Cr4}(\Delta T_2) = -\frac{V_{CF}}{X_b}$$
 (2.73)

2.3.3 - TERCEIRO ESTÁGIO [t₂,t₃] – SEGUNDA ETAPA RESSONANTE

O circuito equivalente à terceira etapa de funcionamento é mostrado na Figura 2.13.

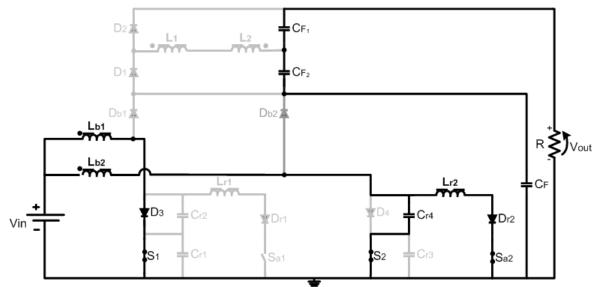


Figura 2.13 – Circuito equivalente da terceira etapa de operação do conversor boost de alto ganho utilizando células de comutação suave.

Nesta etapa de funcionamento, as variáveis de estado $i_{Lr2}(t)$ e $v_{Cr4}(t)$ têm os seguintes valores iniciais:

$$i_{Lr2}(0) = \frac{I_{in}}{2} + \frac{V_{CF}}{Z_{ob}} \cdot \sqrt{\frac{X_b^2 - 1}{X_b^2}}$$
(2.74)

$$v_{Crb}(0) = v_{Cr4}(0) = -\frac{V_{CF}}{X_b}$$
 (2.75)

Esta etapa caracteriza-se pela ressonância entre L_{r2} e C_{r4} . Resolvendo as equações deste circuito tem-se:

$$i_{Cr4}(t) + i_{Lr2}(t) = \frac{I_{in}}{2}$$
 (2.76)

$$i_{Cr4}(t) = C_{r4} \frac{dv_{Cr4}(t)}{dt}$$
 (2.77)

Substituindo (2.77) em (2.76), tem-se:

$$i_{Lr2}(t) = -C_{r4} \cdot \frac{dv_{Cr4}(t)}{dt} + \frac{I_{in}}{2}$$
 (2.78)

Sendo:

$$v_{Cr4}(t) = v_{Ir2}(t) (2.79)$$

$$v_{Lr2}(t) = L_{r2} \cdot \frac{di_{Lr2}(t)}{dt}$$
 (2.80)

Substituindo (2.80) em (2.79), tem-se:

$$v_{Cr4}(t) = L_{r2} \cdot \frac{di_{Lr2}(t)}{dt}$$
 (2.81)

Substituindo (2.81) em (2.78), tem-se:

$$i_{Lr2}(t) = -C_{r4} \cdot L_{r2} \cdot \frac{d^2 i_{Lr2}(t)}{dt^2} + \frac{I_{in}}{2}$$
(2.82)

Aplicando a transformada de Laplace, substituindo C_{r4} , ω_{ob} , Z_{ob} , e utilizando a transformada inversa de Laplace, encontra-se a expressão da corrente $i_{Lr2}(t)$ que define esta etapa:

$$i_{Lr2}(t) = \frac{I_{in}}{2} + \frac{V_{CF} \cdot \sqrt{X_b + 1}}{Z_{ob} \cdot X_b} \left[\sqrt{X_b - 1} \cdot \cos\left(\frac{\omega_{ob}}{\sqrt{X_b + 1}} \cdot t\right) - sen\left(\frac{\omega_{ob}}{\sqrt{X_b + 1}} \cdot t\right) \right]$$
(2.83)

A expressão que defina a tensão no capacitor ressonante 4 $v_{Cr4}(t)$ é encontrada substituindo a equação (2.83) em (2.80):

$$v_{Cr4}(t) = -\frac{V_{CF}}{X_b} \cdot \left[\sqrt{X_b - 1} \cdot sen\left(\frac{\omega_{ob}}{\sqrt{X_b + 1}} \cdot t\right) + \cos\left(\frac{\omega_{ob}}{\sqrt{X_b + 1}} \cdot t\right) \right]$$
(2.84)

Esta etapa termina quando a corrente no indutor ressonante $i_{Lr2}(t)$ é igual à zero.

$$i_{Lr2}\left(\Delta t_3\right) = 0\tag{2.85}$$

Substituindo a condição final do indutor de ressonância na equação (2.83), α_b e Z_{ob} pode-se determinar o intervalo de tempo da terceira etapa que é representado por ΔT_3 :

$$\Delta T_3 = \frac{\sqrt{X_b + 1}}{\omega_{ob}} \cdot \arccos(K)$$
 (2.86)

Substituindo-se (2.86) em (2.84), tem-se o valor da tensão no capacitor ressonante 4 $v_{Cr4}(t)$ no final desta etapa.

$$v_{Cr4}(\Delta T_3) = -\frac{V_{CF}}{X_b} \cdot \left[\sqrt{(X_b - 1) \cdot (1 - K^2)} + K \right]$$
 (2.87)

$$i_{Lr2}\left(\Delta T_3\right) = 0\tag{2.88}$$

2.3.4 - QUARTO ESTÁGIO [t₃,t₄] - ETAPA LINEAR PARA v_{Cr4}

O circuito equivalente à quarta etapa de funcionamento é mostrado na Figura 2.14.

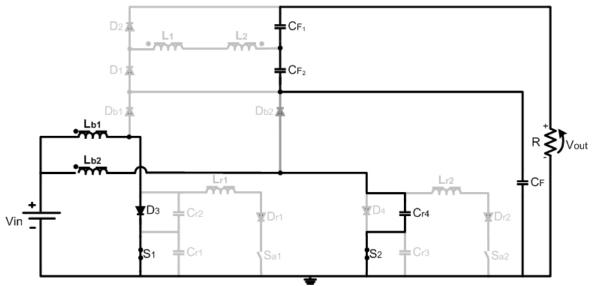


Figura 2.14 – Circuito equivalente da quarta etapa de operação do conversor boost de alto ganho utilizando células de comutação suave.

Nesta etapa de funcionamento, as variáveis de estado $i_{Lr2}(t)$ e $v_{Cr4}(t)$ possuem os seguintes valores iniciais:

$$i_{Lr2}(0) = 0 (2.89)$$

$$v_{Cr4}(0) = -\frac{V_{CF}}{X_b} \cdot \left[\sqrt{(X_b - 1) \cdot (1 - K^2)} + K \right]$$
 (2.90)

Essa etapa é caracterizada pelo crescimento linear da tensão do capacitor ressonante 4 $(v_{Cr4}(t))$. As equações que descrevem esta etapa são as seguintes:

$$i_{Cr4}(t) = \frac{I_{in}}{2} \tag{2.91}$$

$$i_{Cr4}(t) = C_{r4} \cdot \frac{dv_{Cr4}(t)}{dt}$$
 (2.92)

Portanto, a expressão que define $v_{Cr4}(t)$ é a seguinte:

$$v_{Cr4}(t) = v_{Cr4}(0) + \frac{I_{in}}{2 \cdot C_{r4}} \cdot t$$
 (2.93)

Esta etapa termina quando o capacitor C_{r4} é completamente descarregado.

$$V_{Cr4}(\Delta t_4) = 0 \tag{2.94}$$

Substituindo a condição final do capacitor C_{r4} e a equação (2.90) na equação (2.93), e, em seguida, C_{r4} , α_b e ω_{ob} , pode-se determinar o intervalo de tempo da quarta etapa, que será representado por ΔT_4 :

$$\Delta T_4 = \frac{2 \cdot (X_b + 1)}{X_b \cdot \alpha_b \cdot \omega_{ab}} \cdot \left(\sqrt{(X_b - 1) \cdot (1 - K^2)} + K \right)$$
 (2.95)

Conforme apresentado, tem-se:

$$v_{Cr4}(\Delta T_4) = 0 (2.96)$$

2.3.5 - QUINTO ESTÁGIO [t4,t5] – ETAPA DE ARMAZENAMENTO DE ENERGIA

O circuito equivalente à quinta etapa de funcionamento é mostrado na Figura 2.15.

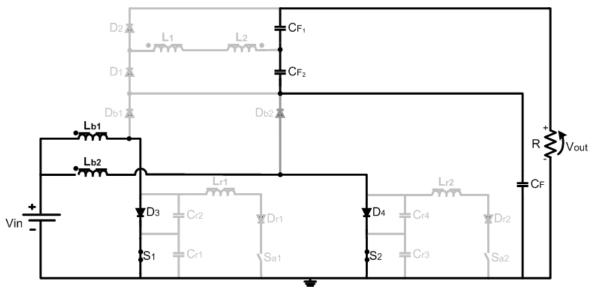


Figura 2.15 – Circuito equivalente da quinta etapa de operação do conversor boost de alto ganho utilizando células de comutação suave.

Esse estágio é iniciado quando a tensão no capacitor C_{r4} é igual à zero, fazendo com que o diodo D_4 em condução em modo ZVS. Durante esse estágio, a energia fornecida pela fonte V_{in} é armazenada nos indutores L_{b1} e L_{b2} . Este estágio termina quando S_1 é desligada em modo ZVS. Nesta etapa, não ocorre alteração dos valores de corrente e tensão nos elementos ressonantes. Portanto, estes permanecem com valor nulo até o fim desse estágio. O tempo de duração desta etapa (ΔT_5) é dado por:

$$\Delta T_5 = \left(-\frac{1}{2} + D\right) \cdot T_s - \Delta T_3 - \Delta T_4 \tag{2.97}$$

$$I_{Lb1} = \frac{I_{in}}{2} \tag{2.98}$$

$$I_{Lb2} = \frac{I_{in}}{2} \tag{2.99}$$

2.3.6 - SEXTO ESTÁGIO $[t_5,t_6]$ – ETAPA LINEAR PARA v_{Cr1}

O circuito equivalente à sexta etapa de funcionamento é mostrado na Figura 2.16.

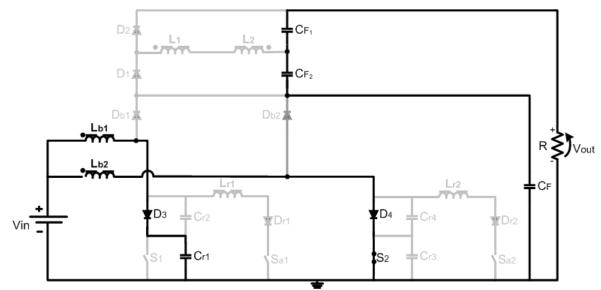


Figura 2.16 – Circuito equivalente da sexta etapa de operação do conversor boost de alto ganho utilizando células de comutação suave.

Este estágio começa quando a chave principal S_1 é desligada em modo ZVS e é caracterizada pela carga do capacitor C_{r1} , sendo o valor inicial da tensão no capacitor v_{Cr1} e os demais elementos $i_{Lr1}(t)$, $i_{Lr2}(t)$, $v_{Cr2}(t)$, $v_{Cr3}(t)$ e $v_{Cr4}(t)$:

$$i_{Lr1}(0) = 0 (2.100)$$

$$i_{Lr2}(0) = 0 (2.101)$$

$$v_{Cr1}(0) = 0 (2.102)$$

$$v_{Cr2}(0) = 0 (2.103)$$

$$v_{Cr3}(0) = 0 (2.104)$$

$$v_{Cr4}(0) = 0 (2.105)$$

Esta etapa é caracterizada pelo crescimento linear da tensão do capacitor ressonante 1 $(v_{Crl}(t))$.

$$I_b = i_{Cr1}(t) (2.106)$$

$$i_{Cr1}(t) = C_{r1} \cdot \frac{dv_{Cr1}(t)}{dt}$$
 (2.107)

$$v_{Cr1}(t) = v_{Cr1}(0) + v_{Cr1}(t)$$
(2.108)

Portanto, a expressão que define $v_{CrI}(t)$ é a seguinte:

$$v_{Cr1}(t) = \frac{I_{in}}{2 \cdot (2 \cdot n + 1) \cdot C_{r1}} \cdot t$$
 (2.109)

Esta etapa termina quando o capacitor C_{r1} é carregado até atingir o valor da tensão de V_{CF} .

$$v_{Cr1}(\Delta t_6) = V_{CF} \tag{2.110}$$

Substituindo a condição final da tensão do capacitor C_{r1} na equação (2.109), e em seguida C_{r1} , α_a e ω_{ob} , pode-se determinar o intervalo de tempo da sexta etapa, que é representado por ΔT_6 :

$$\Delta T_6 = \frac{2 \cdot (2 \cdot n + 1) \cdot (X_a + 1)}{X_a \cdot \alpha_a \cdot \omega_{oa}}$$
 (2.111)

Substituindo (2.111) em (2.109), tem-se o valor da tensão no capacitor C_{r1} :

$$V_{Cr1}(\Delta T_6) = V_{CF}$$
 (2.112)

2.3.7 - SÉTIMO ESTÁGIO [t₆,t₇] – ETAPA DE TRANSFERÊNCIA DE ENERGIA

O circuito equivalente à sétima etapa de funcionamento é mostrado na Figura 2.17.

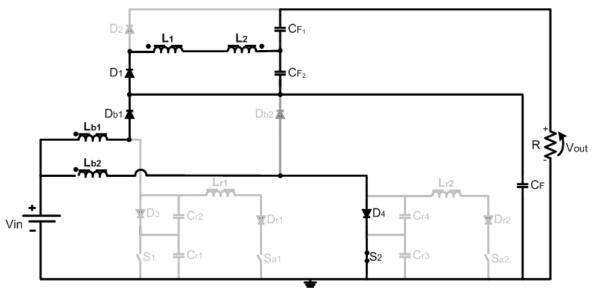


Figura 2.17 – Circuito equivalente da sétima etapa de operação do conversor boost de alto ganho utilizando células de comutação suave.

Durante esta etapa de funcionamento, caracterizada como uma etapa de transferência de energia, as células de comutação não operam no circuito. O diodo D_{b1} começa a conduzir e a energia que foi armazenada durante as etapas anteriores no indutor L_{b1} é transferida ao capacitor C_{F2} , enquanto o indutor L_{b2} armazena energia.

As equações que caracterizam esta etapa são:

$$-V_{in} + L_{b1} \cdot \frac{di_{Lb1}}{dt} + M \cdot \frac{di_{s}}{dt} + V_{CF} = 0$$
 (2.113)

$$-V_{in} + L_{b2} \cdot \frac{di_{Lb2}}{dt} - M \cdot \frac{di_{s}}{dt} = 0$$
 (2.114)

$$I_{med_{Db1}} = \frac{I_o}{2} (2.115)$$

$$I_{med_{p_1}} = I_o \tag{2.116}$$

$$\Delta T_7 = \frac{T_s}{2} - \Delta T_1 - \Delta T_2 - \Delta T_3 - \Delta T_4 - \Delta T_5 - \Delta T_6$$
 (2.117)

2.3.8 - LIMITES DE X_b

Conforme [17], os limites de X_b são:

$$X_b \ge 1 \tag{2.118}$$

$$X_b \le \frac{1}{4 \cdot \alpha_{b2}^2} + 1 \tag{2.119}$$

Para que o conversor mantenha suas comutações não dissipativas, ele deve obedecer às restrições impostas pelas equações (2.118) e (2.119).

2.3.9 - GANHO ESTÁTICO DO CONVERSOR

Pelo princípio de conservação de energia, tem-se:

$$P_o = P_{in} \tag{2.120}$$

$$G = \frac{V_o}{V_{in}} = \frac{I_{in}}{i_{o_{med}}} = \frac{I_a + I_b}{2i_{Db2_{med}}}$$
(2.121)

Sendo a corrente média no diodo D_{b2} dada pela soma das correntes durante o primeiro e o décimo quarto estágios, pois, é durante estes estágios que existe circulação de corrente média de saída dependente da corrente de entrada. Dessa forma:

$$i_{Db2_{med}} = i_{Db2_{med(1^{\circ})}} + i_{Db2_{med(14^{\circ})}}$$
 (2.122)

A corrente média em D_{b2} durante o primeiro estágio é dada por:

$$i_{Db2_{med(1^{\circ})}} = \frac{1}{T_{s}} \cdot \left[\int_{0}^{\Delta T_{1}} I_{b} dt - \int_{0}^{\Delta T_{1}} \frac{V_{CF}}{L_{r_{s}}} \cdot t dt \right] = \frac{1}{T_{s}} \cdot \left[\int_{0}^{\Delta T_{1}} I_{b} \cdot dt - \int_{0}^{\Delta T_{1}} \frac{I_{b}}{\Delta T_{1}} \cdot t dt \right]$$
(2.123)

$$i_{Db2_{med(1^{\circ})}} = \frac{1}{2 \cdot T_s} \cdot I_b \cdot \Delta T_1 \tag{2.124}$$

Sendo o tempo de operação da primeira etapa definido pela equação (2.50), e substituindo I_b , ω_{ob} , T_s e f_o , tem-se:

$$i_{Db2_{med(1^{\circ})}} = \frac{I_{in}}{2 \cdot (4 \cdot n + 2)^{2}} \cdot \frac{\alpha_{b} \cdot K_{1}}{2 \cdot \pi}$$
 (2.125)

E a corrente média em D_{b2} durante o décimo quarto estágio:

$$i_{Db2_{med(14^{\circ})}} = \frac{1}{T_s} \cdot \left[\int_{0}^{\Delta T_{14}} I_b \cdot dt \right] = \frac{1}{T_s} \cdot I_b \cdot \Delta T_{14}$$
 (2.126)

Como o $\Delta T_{14} = \Delta T_7$, tem-se:

$$i_{D2_{mul(14^{\circ})}} = \frac{I_{in}}{T_{s} \cdot (4 \cdot n + 2)} \cdot \left\{ (1 - D) \cdot T_{s} - \left[\frac{\alpha_{b}}{\omega_{ob}} \cdot \frac{1}{(4 \cdot n + 2)} \right] - \left[\frac{1}{\omega_{o}} \cdot \arccos\left(-\frac{1}{X_{b}} \right) \right] - \left[\frac{(4 \cdot n + 2) \cdot (X_{a} + 1)}{X_{a} \cdot \alpha_{a} \cdot \omega_{oa}} \right] \right\}$$
(2.127)

Substituindo ω_{ob} , T_s e f_o em (2.127), tem-se:

$$i_{Db2_{med(14^{\circ})}} = \frac{I_{in}}{(4 \cdot n + 2)} \cdot \left\{ 1 - D - \frac{K_1}{2 \cdot \pi} \cdot \left[\frac{\alpha_b}{(4 \cdot n + 2)} + \arccos\left(-\frac{1}{X_b}\right) + \frac{(4 \cdot n + 2)(X_b + 1)}{X_b \cdot \alpha_b} \right] \right\}$$
(2.128)

Substituindo (2.125) e (2.128) em (2.120), tem-se:

$$i_{Db2_{med}} = \frac{I_{in}}{(4 \cdot n + 2)} \left\{ 1 - D - \frac{K_1}{2 \cdot \pi} \cdot \left[\frac{\alpha_b}{2 \cdot (4 \cdot n + 2)} + \arccos\left(-\frac{1}{X_b}\right) + \frac{(4 \cdot n + 2)(X_b + 1)}{X_b \cdot \alpha_b} \right] \right\}$$
(2.129)

Então o ganho é definido como:

$$G = \frac{I_{in}}{2 \cdot i_{Db2_{med}}} = \frac{2 \cdot n + 1}{1 - \left\{D + \frac{K_1}{2\pi} \cdot \left[\frac{\alpha_b}{2 \cdot (4 \cdot n + 2)} + \arccos\left(-\frac{1}{X_b}\right) + \frac{(4 \cdot n + 2)(X_b + 1)}{X_b \cdot \alpha_b}\right]\right\}}$$
(2.130)

2.3.9.1 - GRÁFICO DO GANHO ESTÁTICO

A Figura 2.19 apresenta o gráfico do ganho estático do conversor desenvolvido neste trabalho, o qual é traçado a partir da equação (2.130), em comparação com o gráfico do conversor que não utiliza a célula de comutação suave. Observa-se a grande proximidade no traçado dos gráficos, comprovando que a célula de comutação não influencia no ganho estático.

Ganho estático para o conversor que utiliza a célula

----- Ganho estático para o conversor que não utiliza a célula

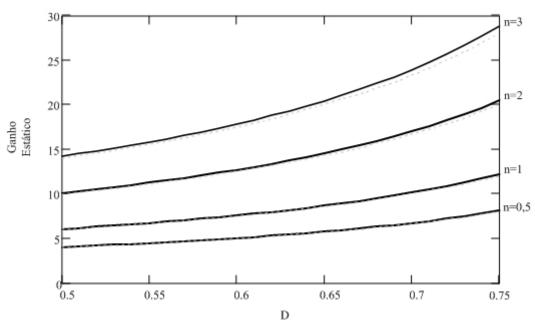


Figura 2.19 – Gráfico do Ganho Estático.

2.3.10 - ANÁLISE DAS TENSÕES E CORRENTES NOS SEMICONDUTORES

Nesta seção, serão apresentadas as análises de corrente média, de corrente eficaz, de corrente máxima e de tensão máxima para os componentes semicondutores.

Para calcular os valores médios e eficazes, serão utilizadas as seguintes definições:

$$I_{med} = \frac{1}{T_s} \int_0^{\Delta T} i(t) dt$$
 (2.131)

$$I_{ef}^{2} = \frac{1}{T_{s}} \int_{0}^{\Delta T} \left[i(t) \right]^{2} dt$$
 (2.132)

2.3.10.1 - ANÁLISE DAS TENSÕES E CORRENTES DO DIODO D_{b2}

O diodo D_{b2} conduz na primeira e décima quarta etapas de funcionamento.

Corrente Média

As correntes médias no diodo D_{b2} são:

$$I_{Db2med\Delta T1} = \frac{1}{T_s} \int_{0}^{\Delta T} \left(I_b - \frac{V_{CF}}{L_{r2}} \cdot t \right) \cdot dt$$
 (2.133)

$$I_{Db2med\Delta T14} = \frac{1}{T_s} \int_0^{\Delta T} I_b \cdot dt \tag{2.134}$$

Resolvendo as equações anteriores, e substituindo o intervalo de tempo da primeira etapa na equação (2.133), bem como o intervalo de tempo da décima quarta etapa na equação (2.134), encontra-se a corrente média no diodo D_{b2} para as duas etapas de funcionamento. O resultado obtido é parametrizado com as equações de α_b e K_1 e, normalizando com I_{in} , tem-se:

$$\frac{I_{Db2med\Delta T1}}{I_{in}} = \frac{K_1}{2 \cdot \pi} \cdot \frac{1}{4 \cdot (2 \cdot n + 1)^2} \cdot \frac{\alpha_b}{2}$$
(2.135)

$$\frac{I_{Db2med\Delta T14}}{I_{in}} = \frac{1}{(4 \cdot n + 2)} \left\{ 1 - D - \frac{K_1}{2 \cdot \pi} \cdot \left[\frac{\alpha_b}{(4 \cdot n + 2)} + \arccos\left(\frac{-1}{X_b}\right) + \frac{(4 \cdot n + 2) \cdot (X_b + 1)}{X_b \cdot \alpha_b} \right] \right\}$$
(2.136)

Somando as equações acima, é obtida a corrente média normalizada para o diodo D_{b2}:

$$\frac{I_{Db2med}}{I_{in}} = \frac{1}{\left(4 \cdot n + 2\right)} \left\{ 1 - D - \frac{K_1}{2 \cdot \pi} \cdot \left[\frac{\alpha_b}{2 \cdot \left(4 \cdot n + 2\right)} + \arccos\left(\frac{-1}{X_b}\right) + \frac{\left(4 \cdot n + 2\right) \cdot \left(X_b + 1\right)}{X_b \cdot \alpha_b} \right] \right\}$$
(2.137)

Corrente Eficaz

As correntes eficazes no diodo D_{b2} são:

$$I_{Db2ef\Delta T1}^{2} = \frac{1}{T_{s}} \int_{0}^{\Delta T} \left(I_{b} - \frac{V_{CF}}{L_{r2}} \cdot t \right)^{2} \cdot dt$$
 (2.138)

$$I_{Db2ef\Delta T14}^{2} = \frac{1}{T_{s}} \int_{0}^{\Delta T} I_{b}^{2} dt$$
 (2.139)

Resolvendo as equações acima e substituindo o intervalo de tempo da primeira etapa na equação (2.138), assim como o intervalo de tempo da décima quarta etapa, que é o mesmo tempo da sétima etapa, na equação (2.139), encontra-se a corrente eficaz no diodo D_{b2} para as duas etapas de funcionamento. O resultado obtido é parametrizado com as equações de α_b e K_1 e, normalizando com I_{in}^2 , tem-se:

$$\frac{I_{Db2ef\Delta T1}^{2}}{I_{in}^{2}} = \frac{K_{1}}{2 \cdot \pi} \cdot \frac{\alpha_{b}}{3} \cdot \frac{1}{(4 \cdot n + 2)^{3}}$$
 (2.140)

$$\frac{I_{Db2ef\Delta T14}^{2}}{I_{in}^{2}} = \frac{1}{(4 \cdot n + 2)} \cdot \left\{ 1 - D - \frac{K_{1}}{2 \cdot \pi} \cdot \left[\frac{\alpha_{b}}{(4 \cdot n + 2)} + \arccos\left(-\frac{1}{X_{b}}\right) + \frac{(4 \cdot n + 2) \cdot (X_{b} + 1)}{X_{b} \cdot \alpha_{b}} \right] \right\}$$
(2.141)

Somando-se as equações (2.140) e (2.141), encontra-se a corrente eficaz normalizada para o diodo D_{b2} :

$$\frac{I_{Db2ef}}{I_{in}} = \left\{ \frac{1}{(4 \cdot n + 2)} \cdot \left\{ 1 - D - \frac{K_1}{2 \cdot \pi} \cdot \left[\frac{\alpha_b}{(4 \cdot n + 2)} + \arccos\left(-\frac{1}{X_b} \right) + \frac{(4 \cdot n + 2) \cdot (X_b + 1)}{X_b \cdot \alpha_b} - \frac{\alpha_b}{3 \cdot (4 \cdot n + 2)^2} \right] \right\}^{\frac{1}{2}}$$
(2.142)

Corrente Máxima

Nas análises realizadas para as etapas de funcionamento, pode-se notar que a corrente que circula pelo diodo D_{b2} atinge seu valor máximo na décima quarta etapa, pois na primeira etapa, a corrente decresce a partir do valor da décima quarta etapa e diminui até se anular. Logo, a corrente é máxima na décima quarta etapa. Portanto, o máximo valor da corrente no diodo D_{b2} é:

$$I_{Db2max} = I_b = \frac{I_{in}}{2 \cdot (2 \cdot n + 1)}$$
 (2.143)

A equação (2.143) é normalizada com I_{in} e dada por:

$$\frac{I_{Db2max}}{I_{in}} = \frac{1}{2 \cdot (2 \cdot n + 1)} \tag{2.144}$$

Tensão Máxima

Na análise do circuito, a quarta e quinta etapas de funcionamento apresentam a máxima polarização reversa sobre o diodo D_{b2} . Quando a chave principal S_2 ou o diodo D_4 conduz, a tensão V_{CF} polariza o diodo reversamente. Logo, a máxima tensão reversa é a tensão sobre o capacitor V_{CF} adicionada à tensão do capacitor ressonante 4 (V_{Cr4}).

$$V_{Db2max} = V_{CF} + V_{Cr4} (2.145)$$

2.3.10.2 - ANÁLISE DAS TENSÕES E CORRENTES NA CHAVE AUXILIAR S_{a2} E NO DIODO D_{r2}

O diodo D_{r2} conduz ao mesmo tempo em que a chave auxiliar S_{a2} . Portanto, a análise será feita apenas para a chave. Esta conduz na primeira, na segunda e na terceira etapa de funcionamento.

Corrente Média

As correntes na chave auxiliar S_{a2} são:

$$I_{Sa2med\Delta T1} = \frac{1}{T_s} \int_{0}^{\Delta T1} \frac{V_{CF}}{L_{r2}} t \cdot dt$$
 (2.146)

$$I_{Sa2med\Delta T2} = \frac{1}{T_s} \int_{0}^{\Delta T2} \left(\frac{I_{in}}{2} + \frac{V_{CF}}{Z_{ob}} \cdot sen(\omega_{ob} \cdot t) \right) \cdot dt$$
 (2.147)

$$I_{Sa2med\Delta T3} = \int_{0}^{\Delta T3} \left(\frac{I_{in}}{2} + \frac{V_{CF} \cdot \sqrt{X_b + 1}}{Z_{ob} \cdot X_b} \left[\sqrt{X_b - 1} \cdot \cos \left(\frac{\omega_{ob}}{\sqrt{X_b + 1}} \cdot t \right) - sen \left(\frac{\omega_{ob}}{\sqrt{X_b + 1}} \cdot t \right) \right] \right) \cdot dt \quad (2.148)$$

Resolvendo as equações acima, e substituindo o intervalo de tempo da primeira etapa na equação (2.146), o intervalo de tempo da segunda etapa na equação (2.147) e por fim o intervalo de tempo da terceira etapa na equação (2.148) encontra-se a corrente média na chave auxiliar S_{a2} para as três etapas de funcionamento. O resultado obtido é parametrizado com as equações de α_b , K e K_1 , e normalizado com I_{in} :

$$\frac{I_{Sa2med\Delta T1}}{I_{in}} = \frac{K_1}{2 \cdot \pi} \cdot \frac{1}{\left[2 \cdot (2 \cdot n + 1)\right]^2} \cdot \frac{\alpha_b}{2}$$
(2.149)

$$\frac{I_{Sa2med \Delta T2}}{I_{in}} = \frac{K_1}{2 \cdot \pi} \left\{ \frac{1}{2} \cdot \arccos\left(-\frac{1}{X_b}\right) + \frac{1}{\alpha_b} \cdot \left(\frac{X_b + 1}{X_b}\right) \right\}$$
(2.150)

$$\frac{I_{Sa2med\Delta T3}}{I_{in}} = \frac{K_1}{2 \cdot \pi} \left\{ \sqrt{X_b + 1} \cdot \arccos\left(K\right) + \frac{X_b + 1}{X_b \cdot \alpha_b} \cdot \left[\sqrt{(X_b - 1) \cdot (1 - K^2)} + K - 1\right] \right\}$$
(2.151)

Somando as três equações acima, encontra-se a corrente média normalizada para a chave auxiliar $S_{\rm a2}$:

$$\frac{I_{Sa2med}}{I_{in}} = \frac{K_1}{2 \cdot \pi} \left\{ \frac{\alpha_b}{2} \cdot \frac{1}{\left[2 \cdot \left(2 \cdot n + 1\right)\right]^2} + \frac{1}{2} \cdot \arccos\left(-\frac{1}{X_b}\right) + \sqrt{X_b + 1} \cdot \arccos\left(K\right) + \right.$$
(2.152)

$$\frac{X_b+1}{X_b\cdot\alpha_b}\cdot\left[\sqrt{(X_b-1)\cdot(1-K^2)}+K\right]$$

Corrente Eficaz

As correntes eficazes para a chave auxiliar S_{a2} são:

$$I_{Sa2ef\Delta T1}^{2} = \frac{1}{T_{s}} \int_{0}^{\Delta T1} \left(\frac{V_{CF}}{L_{r2}} \cdot t \right)^{2} \cdot dt$$
 (2.153)

$$I_{Sa2ef\Delta T2}^{2} = \frac{1}{T_{s}} \int_{0}^{\Delta T2} \left(\frac{I_{in}}{2} + \frac{V_{CF}}{Z_{ob}} \cdot sen(\omega_{ob} \cdot t) \right)^{2} \cdot dt$$
 (2.154)

$$I_{Sa2ef\Delta T3}^{2} = \int_{0}^{\Delta T3} \left(\frac{I_{in}}{2} + \frac{V_{CF} \cdot \sqrt{X_{b} + 1}}{Z_{ob} \cdot X_{b}} \left[\sqrt{X_{b} - 1} \cdot \cos \left(\frac{\omega_{ob}}{\sqrt{X_{b} + 1}} \cdot t \right) - sen \left(\frac{\omega_{ob}}{\sqrt{X_{b} + 1}} \cdot t \right) \right] \right)^{2} \cdot dt \quad (2.155)$$

Resolvendo-se as equações acima, e substituindo-se o intervalo de tempo da primeira etapa na equação (2.153), o intervalo de tempo da segunda etapa na equação (2.154) e por fim o intervalo de tempo da terceira etapa na equação (2.155), encontra-se a corrente eficaz na chave auxiliar S_{a2} para as três etapas de funcionamento. O resultado obtido é parametrizado com as equações de α_b , K e K_1 e normalizado com $I_{\rm in}^2$:

$$\frac{I_{Sa2ef\Delta T1}^2}{I_{in}^2} = \frac{K_1}{2 \cdot \pi} \cdot \frac{1}{\left[2 \cdot \left(2 \cdot n + 1\right)\right]^3} \cdot \frac{\alpha_b}{3}$$
(2.156)

$$\frac{I_{Sa2ef\Delta T2}^2}{I_{in}^2} = \frac{K_1}{2 \cdot \pi} \cdot \left\{ \frac{1}{4} \cdot \arccos\left(-\frac{1}{X_b}\right) + \frac{1}{\alpha_b} \cdot \left(\frac{X_b + 1}{X_b}\right) + \frac{1}{\alpha_b} \cdot \left(\frac{X_b + 1}{X_b$$

$$+\frac{1}{2 \cdot \alpha_b^2} \cdot \left[\arccos\left(-\frac{1}{X_b}\right) + \sqrt{\frac{X_b^2 + 1}{X_b^4}} \right]$$
 (2.157)

$$\frac{I_{Sa2ef\Delta T3}^{2}}{I_{in}^{2}} = \frac{K_{1}}{2 \cdot \pi} \left\{ \frac{1}{4} \cdot \sqrt{X_{b} + 1} \cdot \arccos\left(K\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(\sqrt{\left(X_{b} + 1\right) \cdot \left(1 - K^{2}\right)} + K - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(X_{b} - 1\right) + \frac{1}{\alpha_{b}} \cdot \frac{\left(X_{b} + 1\right)}{X_{b}} \cdot \left(X_{b} - 1\right) + \frac{1}{\alpha_{b}} \cdot \left(X_{b} -$$

$$\frac{\sqrt{X_b+1}}{\alpha_b^2} \cdot \frac{\left(X_b+1\right)}{X_b^2} \cdot \left[\frac{X_b}{2} \left(\arccos\left(K\right) + \sqrt{1-K^2} \cdot K\right) - \sqrt{X_b-1} \cdot \sqrt{1-K^2}\right]\right\}$$
(2.158)

Somando as três equações acima, encontra-se a corrente eficaz normalizada para a chave auxiliar S_{a2} :

$$\frac{I_{Sa2ef}}{I_{in}} = \left\{ \frac{K_1}{2 \cdot \pi} \cdot \left\{ \frac{1}{\left[2 \cdot (2 \cdot n + 1)\right]^3} \cdot \frac{\alpha_b}{3} + \frac{1}{4} \cdot \arccos\left(-\frac{1}{X_b}\right) + \frac{1}{\alpha_b} \cdot \left(\frac{X_b + 1}{X_b}\right) + \frac{1}{2 \cdot \alpha_b^2} \cdot \left[\arccos\left(-\frac{1}{X_b}\right) + \sqrt{\frac{X_b^2 + 1}{X_b^4}}\right] + \frac{1}{4} \cdot \sqrt{X_b + 1} \cdot \arccos(K) + \frac{1}{\alpha_b} \cdot \frac{(X_b + 1)}{X_b} \cdot \left[\sqrt{(X_b + 1) \cdot (1 - K^2)} + K - 1\right]$$

$$\frac{\sqrt{X_b + 1}}{\alpha_b^2} \cdot \frac{(X_b + 1)}{X_b^2} \cdot \left[\frac{X_b}{2} \left(\arccos(K) + \sqrt{1 - K^2} \cdot K\right) - \sqrt{X_b - 1} \cdot \sqrt{1 - K^2}\right]\right\}^{\frac{1}{2}} \tag{2.159}$$

Corrente Máxima

Nas análises realizadas para as etapas de funcionamento, pode-se notar que a corrente que circula pela chave auxiliar S_{a2} atinge seu valor máximo na segunda etapa. Então:

$$I_{Sa2\max} = \frac{I_{in}}{2} + \frac{V_{CF}}{Z_{ob}} \tag{2.160}$$

A equação (2.160) é normalizada com I_{in}:

$$\frac{I_{\text{Sa2max}}}{I_{in}} = \frac{\alpha_b + 2}{2 \cdot \alpha_b} \tag{2.161}$$

Tensão Máxima

Na análise do circuito, nota-se a máxima polarização direta sobre a chave auxiliar S_{a2} durante a décima quarta etapa de funcionamento. Quando a chave principal S_2 , a chave auxiliar S_{a2} ou o diodo D_4 não conduzem, a tensão V_{CF} polariza a chave diretamente. Assim, a máxima tensão direta é a tensão de saída.

$$V_{Sa2\max} = V_{CF} \tag{2.162}$$

2.3.10.3 - ANÁLISE DAS TENSÕES E CORRENTES NA CHAVE PRINCIPAL S2

A chave principal S₂ conduz da terceira, até a décima segunda etapa de funcionamento. Para os cálculos são consideradas da quarta a décima segunda etapa, já que na terceira quem conduz é o diodo intrínseco a chave.

Corrente Média

A corrente média na chave principal S_2 é dada por:

$$I_{S2med} = \frac{1}{T_s} \left\{ \int_{0}^{\Delta T4} \frac{I_{in}}{2} \cdot dt + \int_{0}^{\Delta T5} \frac{I_{in}}{2} \cdot dt + \int_{0}^{\Delta T6} I_a \cdot dt + \int_{0}^{\Delta T7} I_a \cdot dt + \int_{0}^{\Delta T8} I_a \cdot dt + \int_{0}^{\Delta T9} I_a \cdot dt + \int_{0}^{\Delta T9} \frac{I_{in}}{2} \cdot dt + \int_{0}^{\Delta T11} \frac{I_{in}}{2} \cdot dt + \int_{0}^{\Delta T12} \frac{I_{in}}{2} \cdot dt \right\}$$
(2.163)

Substituindo os intervalos de tempo referente a cada etapa da operação, encontra-se a corrente média na chave principal S_2 para as etapas de funcionamento. O resultado obtido é parametrizado com as equações de K, K_1 . A corrente média normalizada para a chave principal S_2 :

$$\frac{I_{S2med}}{I_{in}} = -\frac{1}{2} + D + (1 - D) \cdot \left(1 - \frac{1}{2 \cdot (2 \cdot n + 1)}\right) - \frac{1}{2} \cdot \frac{K_1}{2 \cdot \pi} \cdot \sqrt{X_b + 1} \cdot \arccos(K)$$
 (2.164)

Corrente Eficaz

As correntes eficazes na chave principal S_2 são:

$$I_{S2ef}^{2} = \frac{1}{T_{s}} \left\{ \int_{0}^{\Delta T4} \left(\frac{I_{in}}{2} \right)^{2} \cdot dt + \int_{0}^{\Delta T5} \left(\frac{I_{in}}{2} \right)^{2} \cdot dt + \int_{0}^{\Delta T6} \left(I_{a} \right)^{2} \cdot dt + \int_{0}^{\Delta T7} \left(I_{a} \right)^{2} \cdot dt + \int_{0}^{\Delta T7} \left(I_{a} \right)^{2} \cdot dt + \int_{0}^{\Delta T9} \left(I_{a} \right)^{2} \cdot dt + \int_{0}^{\Delta T10} \left(\frac{I_{in}}{2} \right)^{2} \cdot dt + \int_{0}^{\Delta T11} \left(\frac{I_{in}}{2} \right)^{2} \cdot dt + \int_{0}^{\Delta T12} \left(\frac{I_{in}}{2} \right)^{2} \cdot dt \right\}$$

$$(2.165)$$

Substituindo os intervalos de tempo referente a cada etapa da operação, encontra-se a corrente eficaz na chave principal S_2 para as etapas de funcionamento. O resultado obtido é parametrizado com as equações de K, K_1 . A corrente eficaz normalizada para a chave principal S_2 :

$$\frac{I_{S2ef}}{I_{in}} = \left[-\frac{1}{2} + D + (1 - D) \cdot \left(1 - \frac{1}{2 \cdot (2 \cdot n + 1)} \right) - \frac{1}{2} \cdot \frac{K_1}{2 \cdot \pi} \cdot \sqrt{X_b + 1} \cdot \arccos(K) \right]^{\frac{1}{2}}$$
(2.166)

Corrente Máxima

Nas análises realizadas para as etapas de funcionamento, pode-se notar que a corrente máxima que circula pela chave principal S_2 é:

$$I_{S2\text{max}} = I_a = I_{in} \cdot \left[1 - \frac{1}{2 \cdot (2 \cdot n + 1)} \right]$$
 (2.167)

A equação (2.167) é normalizada com I_{in} da seguinte forma:

$$\frac{I_{S2\max}}{I_{in}} = 1 - \frac{1}{2 \cdot (2 \cdot n + 1)}$$
 (2.168)

Tensão Máxima

Na análise do circuito, a décima quarta etapa de funcionamento apresenta a máxima polarização direta sobre a chave principal S_2 . Quando a chave principal S_2 , a chave auxiliar S_{a2} ou o diodo D_4 não conduzem, a tensão V_{CF} polariza a chave principal S_2 diretamente. Assim, a máxima tensão direta é a tensão de saída.

$$V_{\text{S2max}} = V_{CF} \tag{2.169}$$

2.3.10.4 - ANÁLISE DAS TENSÕES E CORRENTES NO DIODO D4

O diodo D₄ conduz da quinta até a décima terceira etapas de funcionamento.

Corrente Média

As correntes médias no diodo D₄ são:

$$I_{D4med} = \frac{1}{T_s} \left\{ \int_0^{\Delta T5} \frac{I_{in}}{2} \cdot dt + \int_0^{\Delta T6} I_a \cdot dt + \int_0^{\Delta T7} I_a \cdot dt + \int_0^{\Delta T8} I_a \cdot dt + \int_0^{\Delta T9} I_a \cdot dt + \int_0^{\Delta T9} I_a \cdot dt + \int_0^{\Delta T10} \frac{I_{in}}{2} \cdot dt + \int_0^{\Delta T11} \frac{I_{in}}{2} \cdot dt + \int_0^{\Delta T12} \frac{I_{in}}{2} \cdot dt + \int_0^{\Delta T13} I_b \cdot dt \right\}$$
(2.170)

Substituindo os intervalos de tempo referente a cada etapa da operação, encontra-se a

corrente média no diodo D₄ para as etapas de funcionamento. O resultado obtido é parametrizado com as equações de K, K₁. A corrente média normalizada para o diodo D₄:

$$\frac{I_{D4med}}{I_{in}} = -\frac{1}{2} + D + (1 - D) \cdot \left(1 - \frac{1}{2 \cdot (2 \cdot n + 1)}\right) + \frac{K_1}{2 \cdot \pi} \cdot \left(-\frac{1}{2} \cdot \sqrt{X_b + 1} \cdot \arccos\left(K\right) + \frac{\left(X_b + 1\right)}{X_b \cdot \alpha_b} \cdot \left[\sqrt{(X_b - 1) \cdot (1 - K)} + K - 1\right]\right)$$
(2.171)

Corrente Eficaz

As correntes eficazes no diodo D₄ são:

$$I_{D4ef}^{2} = \frac{1}{T_{s}} \left\{ \int_{0}^{\Delta T5} \left(\frac{I_{in}}{2} \right)^{2} \cdot dt + \int_{0}^{\Delta T6} \left(I_{a} \right)^{2} \cdot dt + \int_{0}^{\Delta T7} \left(I_{a} \right)^{2} \cdot dt + \int_{0}^{\Delta T8} \left(I_{a} \right)^{2} \cdot dt \right\}$$

$$\int_{0}^{\Delta T9} \left(I_{a} \right)^{2} \cdot dt + \int_{0}^{\Delta T10} \left(\frac{I_{in}}{2} \right)^{2} \cdot dt + \int_{0}^{\Delta T11} \left(\frac{I_{in}}{2} \right)^{2} \cdot dt + \int_{0}^{\Delta T12} \left(\frac{I_{in}}{2} \right)^{2} \cdot dt + \int_{0}^{\Delta T13} \left(I_{b} \right)^{2} \cdot dt \right\}$$

$$(2.172)$$

Substituindo os intervalos de tempo referente a cada etapa da operação, encontra-se a corrente eficaz no diodo D_4 para as etapas de funcionamento. O resultado obtido é parametrizado com as equações de K, K_1 . A corrente eficaz normalizada para o diodo D_4 :

$$\frac{I_{D4ef}}{I_{in}} = \left[-\frac{1}{2} + D + (1 - D) \cdot \left(1 - \frac{1}{2 \cdot (2 \cdot n + 1)} \right) + \frac{K_1}{2 \cdot \pi} \cdot \left(-\frac{1}{2} \cdot \sqrt{X_b + 1} \cdot \arccos(K) + \frac{(X_b + 1)}{X_b \cdot \alpha_b} \cdot \left[\sqrt{(X_b - 1) \cdot (1 - K)} + K - 1 \right] \right)^{\frac{1}{2}}$$
(2.173)

Corrente Máxima

Nas análises realizadas para as etapas de funcionamento, pode-se notar que a corrente máxima que circula pelo diodo D₄ é:

$$I_{D4\text{max}} = I_a = I_{in} \cdot \left[1 - \frac{1}{2 \cdot (2 \cdot n + 1)} \right]$$
 (2.174)

A equação (2.174) é normalizada com I_{in}:

$$\frac{I_{D4\text{max}}}{I_{in}} = 1 - \frac{1}{2 \cdot (2 \cdot n + 1)}$$
 (2.175)

Tensão Máxima

A máxima tensão a qual o diodo D_4 está submetido é reversa e igual à máxima tensão em C_{r4} .

$$V_{D4\max} = V_{Cr4} \tag{2.176}$$

2.4 - CONSIDERAÇÕES FINAIS

Neste capítulo foram desenvolvidas as análises qualitativa e quantitativa do conversor proposto. Pelo princípio de funcionamento e pelo formato das principais formas de onda pode-se observar que as chaves operam com comutação suave, sendo que as chaves principais em modo ZVS e as chaves auxiliares, em ZCS. Dessa maneira, as perdas por chaveamento tornam-se bastante reduzidas, possibilitando assim um maior rendimento do conversor. Observa-se também que as chaves principais não conduzem nenhuma parcela da corrente ressonante, sofrendo, portanto, perdas por condução iguais às do conversor *boost* de alto ganho que não utiliza células de comutação suave. Também foram calculados os intervalos de duração de cada etapa de funcionamento, além da equação do ganho estático. Através do gráfico do ganho estático pode-se constatar a grande proximidade com o traçado do gráfico do conversor *boost* de alto ganho sem auxilio à comutação [2].

CAPÍTULO 3

ESTRATÉGIA DE CONTROLE

3.1 - CONSIDERAÇÕES INICIAIS

Este capítulo tem a finalidade de apresentar o método, o projeto e a implementação do circuito de controle utilizado, a fim de garantir a estabilidade na operação e na regulação do barramento de saída. O compensador utilizado é implementado digitalmente através de programação no microcontrolador da família PIC 16F877A [18]. O circuito de controle é responsável pela geração dos pulsos que servirão para acionar os semicondutores principais e auxiliares.

3.2 - MALHA DE TENSÃO DO CONVERSOR *BOOST* DE ALTO GANHO UTILIZANDO CÉLULAS DE COMUTAÇÃO SUAVE

O método de controle utilizado é denominado Controle por Modo de Tensão, o qual é um dos mais simples e eficientes, por isso mesmo um dos mais utilizados. Utiliza-se este método quando a variável a ser controlada é uma tensão que deve ser mantida regulada mediante variações de carga e da tensão da fonte de alimentação [20].

O diagrama de blocos de Controle Modo Tensão é ilustrado na Figura 3.1, onde:

 V_o : tensão de saída do conversor a ser controlada.

H(s): representa a função de transferência do transdutor do sinal a ser controlado. Esta função é responsável pela amostragem da tensão de saída. $H(s)=V_{ref}/V_o=2,5/180=0,01388$.

 V_a : amostragem de V_o que deve ser ajustada no valor de V_{ref} .

 V_{ref} : tensão de referência.

 V_{ε} : tensão de erro.

C(s): representa a função de transferência do compensador, responsável pela estabilidade do sistema em malha fechada, o qual fornece uma tensão de controle V_c .

 V_c : tensão de controle.

 F_m : modulador. Converte o sinal de controle em um sinal PWM com uma determinada razão cíclica.

G(s): função de transferência da planta a ser controlada.

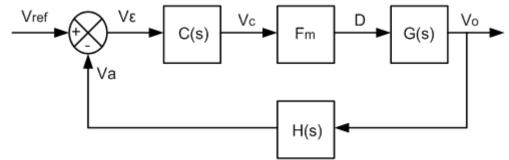


Figura 3.1 – Diagrama de blocos Malha de Tensão.

$$V_0 = C(s) \cdot Fm \cdot G(s) \cdot \left(V_{ref} - V_a\right) \tag{3.1}$$

Esta técnica consiste em amostrar a tensão de saída e compará-la com uma tensão de referência, gerando, assim, uma tensão de erro. Esta tensão é entregue ao compensador que fornece, na sua saída, uma tensão de controle. A tensão de controle passa pelo modulador PWM e fornece a razão cíclica para acionamento das chaves principais, corrigindo a tensão de saída para o valor desejado.

A Figura 3.2 ilustra os sinais obtidos nos CIs que são utilizado no controle do conversor.

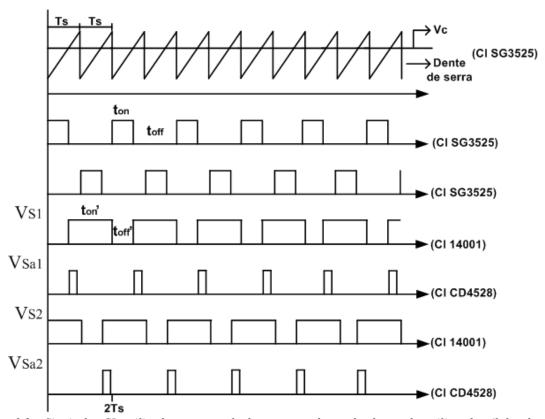


Figura 3.2 – Sinais dos CIs utilizados no controle do conversor boost de alto ganho utilizando células de comutação suave.

De acordo com a Figura 3.2:

$$t_{on} = t_{off}$$
 (3.2)

$$t_{off} = t_{on}$$
 (3.3)

$$t_{on} = D \cdot 2 \cdot T_{s} \tag{3.4}$$

$$t_{on}' = (1 - D) \cdot 2 \cdot T_s \tag{3.5}$$

Por semelhança de triângulo, tem-se:

$$\frac{\Delta v_c}{v_c} = \frac{T_s}{t_{on}} \tag{3.6}$$

$$t_{on}' = T_s \cdot \frac{1}{\Delta v_c} \cdot v_c \tag{3.7}$$

De (3.3), tem-se que:

$$t_{on}' = (1 - D) \cdot 2 \cdot T_s \tag{3.8}$$

Igualando (3.8) e (3.7), tem-se:

$$D = 1 - \frac{1}{2 \cdot \Delta v_c} \cdot v_c \tag{3.9}$$

Com a variação da tensão de controle tem-se a variação da razão cíclica do conversor.

$$\frac{\partial D}{\partial v_c} = -\frac{1}{2 \cdot \Delta v_c} \tag{3.10}$$

Então o ganho do modulador é dado por:

$$Fm = -\frac{1}{2 \cdot \Delta v_c} \tag{3.11}$$

Para evitar a introdução de -180º de fase na planta considera-se que o sinal negativo do modulador é cancelado pela inversão dos sinais no compensador. Assim:

$$Fm = \frac{1}{2 \cdot \Delta v_c} \tag{3.12}$$

O diagrama de blocos do Controle Modo de Tensão é redesenhado conforme a Figura 3.3.

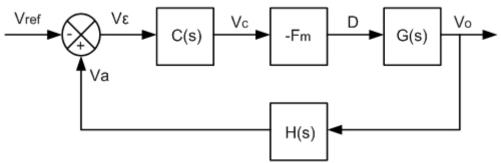


Figura 3.3 – Diagrama de blocos do controlador do conversor.

3.3 - PROJETO DO COMPENSADOR

O objetivo do compensador é garantir a estabilidade de operação do sistema. Para realização deste projeto escolheu-se um compensador de tensão. No primeiro passo, determina-se a função de transferência que relaciona a tensão de saída do conversor com a razão cíclica, como mostrado em (3.13). Adotou-se a mesma função do conversor *boost* clássico [21] e [22].

$$G(s) = \frac{V_{in} \cdot \left(1 - D\right)^{2}}{\left(1 - D\right)^{2}} \frac{1 - \frac{s}{R_{0} \cdot \left(1 - D\right)^{2}} \cdot L_{b1}}{s^{2} \cdot \frac{L_{b1} \cdot C_{Bosst_eq}}{\left(1 - D\right)^{2}} + s \cdot \frac{L_{b1}}{R_{0} \cdot \left(1 - D\right)^{2}} + 1}$$
(3.13)

O capacitor equivalente C_{Feq} é o valor visto pela fonte de entrada e é calculado como se segue.

$$C_{Feq} = C_{F1} + C_{F2} + C_F (3.14)$$

$$C_{Fea} = 2,04mF$$
 (3.15)

Pelo princípio de conservação de energia, tem-se:

$$\frac{1}{2} \cdot C_{Boost_eq} \cdot V_{Boost}^2 = \frac{1}{2} \cdot C_{Feq} \cdot V_{BoostAG}^2$$
(3.16)

$$C_{Boost_eq} = 2,04 \cdot 10^3 \cdot \frac{180^2}{60^2} \tag{3.17}$$

$$C_{Boost eq} = 18,36mF \tag{3.18}$$

Substituindo os valores do projeto na equação (3.13):

$$G(s) = \frac{-0,002123 \cdot s + 132,3}{1,909 \cdot 10^{-5} \cdot s^2 + 1,604 \cdot 10^{-5} \cdot s + 1}$$
(3.19)

A Figura 3.4 apresenta o diagrama de bode para a função de transferência da relação obtida em (3.19), que é a função de transferência da planta. Vale ressaltar que o conversor apresenta um zero no semi-plano direito, o que pode levar o sistema à instabilidade.

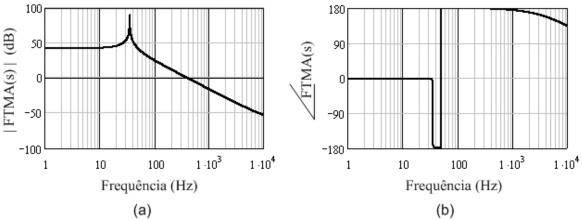


Figura 3.4 – Diagrama de Bode da função de Transferência do conversor boost de alto ganho; (a)Ganho; (b)

Em seguida, calcula-se a função de transferência de laço aberto sem compensador da planta, $FTLA_{sc}(s)$:

$$FTLA_{sc}(s) = G(s) \cdot Fm \cdot H(s) \tag{3.20}$$

A Figura 3.5 apresenta o diagrama de bode para esta função. Constata-se o pequeno ganho em baixas freqüências, uma inclinação maior que -20dB/dec na freqüência de cruza-

mento e a margem de fase próxima de zero. Portanto, o sistema não compensado tende à instabilidade.

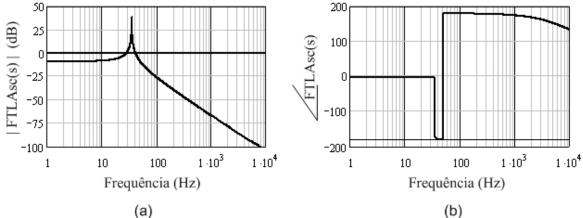


Figura 3.5 – Diagrama de Bode do sistema não compensado; (a)Ganho; (b) Fase.

Para fazer o controle da malha de tensão foi escolhido um compensador do tipo Proporcional Integral Derivativo – PID, mostrado na Figura 3.6. Sua função de transferência em termos dos resistores e capacitores é apresentada na equação 3.21.

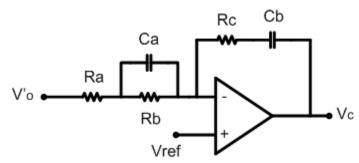


Figura 3.6 – Compensador PID.

$$C(s) = \frac{R_c}{R_a} \cdot \frac{\left(s + \frac{1}{R_c \cdot C_b}\right) \left(s + \frac{1}{R_b \cdot C_a}\right)}{s \cdot \left(s + \frac{R_a + R_b}{R_a \cdot R_b \cdot C_a}\right)}$$
(3.21)

Os critérios para alocação de pólos e zeros do compensador PID são descritos a seguir.

Os zeros do compensador são alocados na frequência do zero no semi-plano direito do conversor e devem garantir que a passagem pelo zero da função de transferência seja com inclinação de -20dB/dec:

$$\omega_0 = \frac{1 - D}{\sqrt{C_{Boost_eq} \cdot L_{b1}}} \tag{3.22}$$

$$f_{z1} = f_{z2} = \frac{\omega_0}{2 \cdot \pi} = 36,428Hz \tag{3.23}$$

Um pólo de C(s) é alocado na origem para elevar o ganho e minimizar o erro estático em regime permanente, enquanto o outro pólo é colocado em 10 vezes a freqüência natural ω_o :

$$f_{p1} = 0 (3.24)$$

$$f_{p2} = \frac{10 \cdot \omega_0}{2 \cdot \pi} = 364,276Hz \tag{3.25}$$

A frequência de cruzamento é alocada uma década abaixo da frequência do zero do semi-plano direito da planta.

$$f_{cr} = \frac{f_{z1}}{10} = 3,643Hz \tag{3.26}$$

$$f_{cr} \cong 4Hz \tag{3.27}$$

O sistema de equações que definem os parâmetros do compensador é:

$$Kv = \frac{R_c}{R_-} \tag{3.28}$$

$$f_{z1} = \frac{1}{2 \cdot \pi \cdot R_c \cdot C_b} \tag{3.29}$$

$$f_{z2} = \frac{1}{2 \cdot \pi \cdot R_b \cdot C_a} \tag{3.30}$$

$$f_{p2} = \frac{R_a + R_b}{2 \cdot \pi \cdot R_a \cdot R_b C_a} \tag{3.31}$$

Assumindo $R_b=10k\Omega$ calcula-se os outros componentes:

$$C_a = 436,908\eta F (3.32)$$

$$R_a = 1{,}111k\Omega \tag{3.33}$$

$$R_c = 3,24k\Omega \tag{3.34}$$

$$C_b = 1{,}348\mu F$$
 (3.35)

Substituindo estes valores na equação (3.21), encontra-se a função de transferência do compensador, observada em (3.36):

$$C(s) = \frac{2,919 \cdot s^2 + 1336 \cdot s + 1,53 \cdot 10^5}{s^2 + 2291 \cdot s}$$
(3.36)

O diagrama de Bode da função de transferência de laço aberto com compensador, F- $TLA_{cc}(s)$, é mostrado na Figura 3.7, de onde se observa que a função apresenta um ganho com inclinação de aproximadamente -20dB/dec na freqüência de cruzamento, e margem de fase de 123°, o que mostrou-se estável experimentalmente.

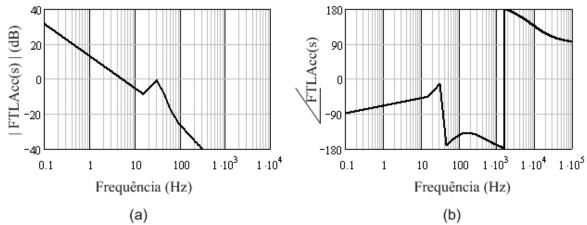


Figura 3.7 – Diagrama de Bode do sistema compensado; (a)Ganho; (b) Fase.

3.4 - PROJETO DO CONTROLE DIGITAL

Para implementar o controle digital no sistema proposto é necessário discretizar o compensador. Para tanto, converte-se a função de transferência do compensador no plano s para o plano z.

Deve-se acrescentar ao sistema o ganho do bloco conversor analógico/digital e o ganho do conversor digital/analógico, como representado na Figura 3.8.

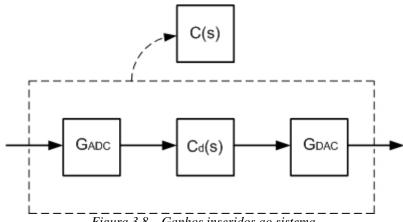


Figura 3.8 – Ganhos inseridos ao sistema.

Onde:

 $C_d(s)$: compensador discretizado.

*G*_{ADC}: ganho do bloco conversor analógico/digital.

 G_{DAC} : ganho do bloco conversor digital/analógico.

$$C(s) = G_{ADC} \cdot C_d(s) \cdot G_{DAC} \tag{3.37}$$

Sendo:

$$G_{ADC} = \frac{1024b}{5V} \tag{3.38}$$

$$G_{DAC} = \frac{5V}{255b} \tag{3.39}$$

Então:

$$C_d(s) = \frac{C(s)}{4} \tag{3.40}$$

$$C_d(s) = \frac{0,7262 \cdot s^2 + 332,8 \cdot s + 3,809 \times 10^4}{s^2 + 2291s}$$
(3.41)

Para converter a função de transferência do compensador no plano s para o plano z, utilizou-se o *software MATLAB*, enquanto o método de discretização adotado foi o critério de Tustin com um tempo de amostragem de 200 µs.

$$C_{disc}(z) = \frac{U(z)}{e(z)}$$
(3.42)

Onde:

 $C_{disc}(z)$: representa a função de transferência do compensador no domínio z.

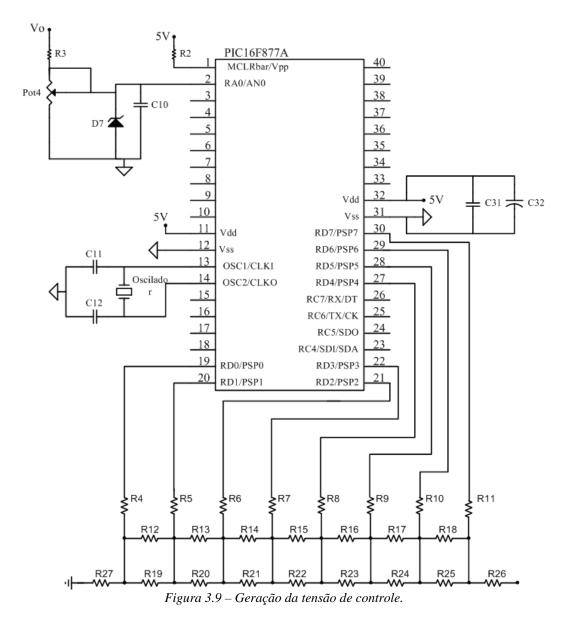
U(z): representa a saída do compensador no domínio z.

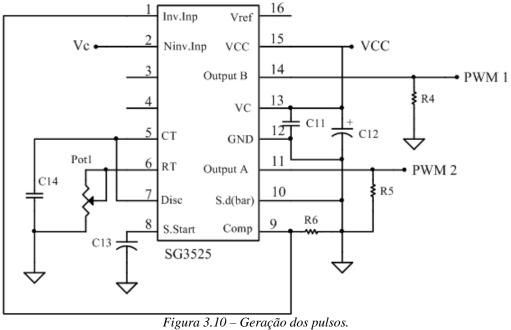
e(z): representa o erro do sistema no domínio z.

$$C_{disc}(z) = \frac{0.6188 \cdot z^2 - 1.182 \cdot z + 0.5646}{z^2 - 1.627 \cdot z + 0.6272}$$
(3.43)

Em seguida, transforma-se a função transferência do controlador na forma de equação de estado:

$$U(k) = 1,627 \cdot U(k-1) - 0,6272 \cdot U(k-2) + 0,6188 \cdot e(k) - 1,182 \cdot e(k-1) + +0,5649 \cdot e(k-2)$$


$$(3.44)$$


Realizando as devidas aproximações, a equação a ser introduzida no PIC é dada por:

$$U(k) = 2 \cdot U(k-1) - 1 \cdot U(k-2) + \frac{6}{10} \cdot e(k) - \frac{12}{10} \cdot e(k-1) + \frac{6}{10} \cdot e(k-2)$$
 (3.45)

3.5 - O CIRCUITO DE CONTROLE

Utiliza-se um conversor digital/analógico do tipo R-2R para transformar o sinal digital da tensão de referência que sai do microcontrolador em um sinal analógico. Este nível de tensão é aplicado ao integrado SG3525 e comparado com uma onda dente-de-serra interna a este integrado, de onde se obtém pulsos idealmente iguais, defasados de 180° elétricos e com razão cíclica máxima de 50%. Esta parte do circuito é ilustrada nas Figuras 3.9 e 3.10 respectivamente.

Para que o conversor opere corretamente é necessária uma razão cíclica mínima de 50%. Desta forma os pulsos obtidos na saída do integrado SG3525 são conectados à porta inversora NOR 14001. Estes pulsos servem para acionamento das duas chaves principais do conversor de acordo com a variação da razão cíclica. Para o acionamento das duas chaves auxiliares é utilizado o monoestável CD4528. A Figura 3.11 ilustra este circuito.

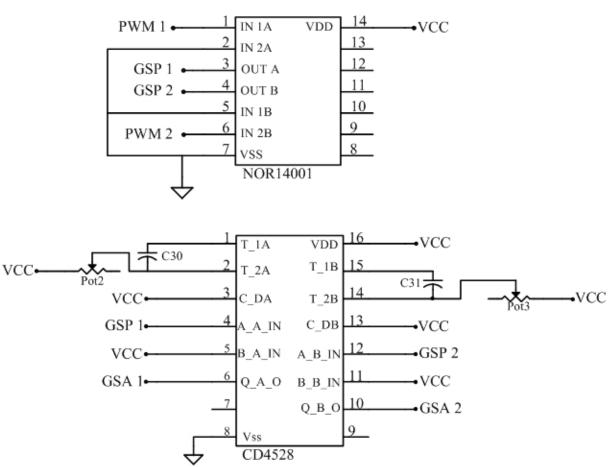


Figura 3.11 – Geração dos pulsos das chaves principais e auxiliares.

Em seguida estes pulsos são entregues ao circuito integrado HCPL 3120 que é um *opto-driver* responsável por fazer a isolação entre o circuito de controle e o de potência. Posteriormente, dois circuitos do tipo tiristor dual recebem cada um dos pulsos referentes às chaves principais. No entanto, estes pulsos serão enviados às chaves apenas quando os capacitores ressonantes C_{r1} e C_{r3} não estiverem mais carregados com nível de tensão V_{CF} , garantindo que as chaves principais só entrem em condução quando a tensão nestes capacitores for nula, isto é, em ZVS. Enquanto houver tensão entre dreno e *source*, o transistor que recebe o pulso do HCPL 3120, Q_1 ou Q_3 , mantém-se em aberto, e somente conduz o pulso à chave quando a tensão entre dreno e *source* chegar a zero. Quando o pulso deixa de existir, o transistor (Q_1 ou Q_3) é bloqueado, fazendo com que o transistor (Q_2 ou Q_4) entre em condução, uma vez que a

capacitância intrínseca à chave ainda está carregada, sendo esta capacitância descarregada através da resistência conectada ao coletor deste transistor. Estes pulsos são aplicados simultaneamente às chaves S_1 , S_2 , S_{a1} , S_{a2} . Este circuito é ilustrado na Figura 3.12.

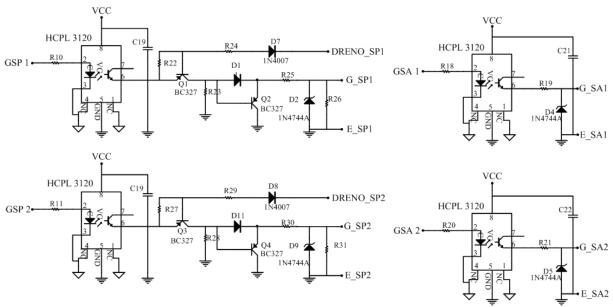


Figura 3.12 - Circuito de gatilho das chaves principais e auxiliares.

3.6 - CONSIDERAÇÕES FINAIS

Nesse capítulo foram explicados o projeto do controle de malha de tensão, o circuito de comando das chaves principais e auxiliares do conversor e a discretização do compensador para implementação do controle digital no microcontrolador PIC 16F877, de forma que a tensão no barramento de saída esteja sempre constante em 180V.

CAPÍTULO 4

RESULTADOS DE SIMULAÇÃO E EXPERIMENTAIS

4.1 - CONSIDERAÇÕES INICIAIS

Este capítulo apresenta os principais resultados de simulação para o conversor *boost* de alto ganho utilizando células de comutação suave em malha aberta, bem como os resultados experimentais em malha fechada.

Os componentes utilizados na simulação são todos ideais e o efeito da dispersão entre os enrolamentos dos indutores acoplados é desprezado, a fim de facilitar a implementação do circuito.

Os resultados de simulação e experimentais coletados são comparados entre si validando a teoria apresentada nos capítulos anteriores e, assim, comprovando a efetividade do sistema.

Por fim, é realizado o levantamento da curva de rendimento do conversor e a comparação com a topologia que não utiliza a célula de comutação, concluindo, dessa forma, a análise experimental do sistema.

4.2 - CONFIGURAÇÃO DO SISTEMA

A Figura 4.1 apresenta a topologia do sistema e a tabela 4.1, os principais parâmetros.

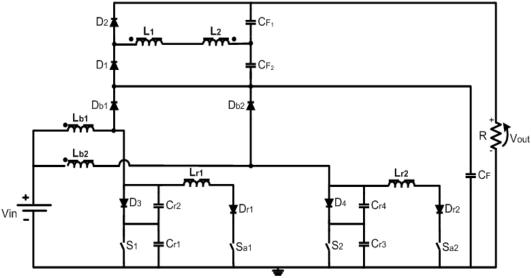


Figura 4.1 – Topologia do sistema.

Tensão de entrada28VPotência de entrada550WTensão de saída180VPotência de saída500WResistência de Carga $64,8\Omega$ Freqüência de Chaveamento50kHz

Tabela 4.1 – Principais parâmetros do sistema

4.3 - RESULTADOS DE SIMULAÇÃO

A seguir são apresentados os principais resultados de simulação do conversor para carga resistiva.

A Figura 4.2 apresenta as formas de onda características de tensão e corrente na entrada de condução da chave principal S_1 , de onde se observa que esta chave começa a conduzir em modo ZVS. As mesmas formas de onda são válidas para a chave S_2 .

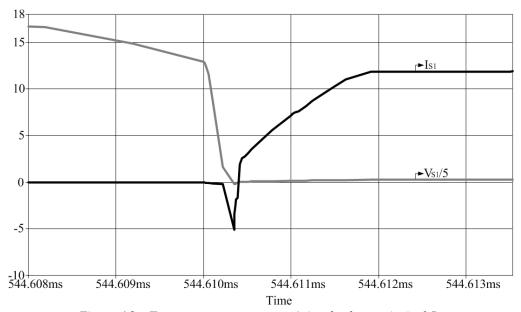


Figura 4.2 – Tensão e corrente característica da chave principal S₁.

A Figura 4.3 apresenta as formas de onda características de tensão e a corrente na entrada de condução do interruptor S_{a1} , onde se observa que esta começa a conduzir em modo ZCS. As mesmas formas de onda são válidas para o interruptor S_{a2} .

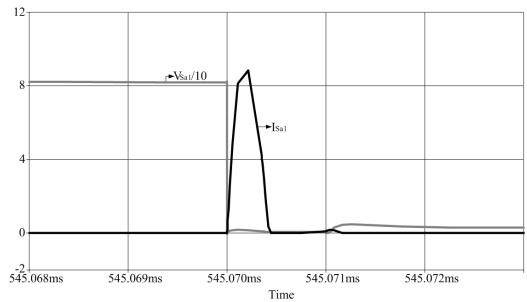


Figura 4.3 – Tensão e corrente característica da chave auxiliar S_{al} .

A Figura 4.4 apresenta as formas de onda características da corrente na chave auxiliar S_{a1} e tensão nos capacitores ressonantes C_{r1} e C_{r2} , de onde se observa: a existência da circulação de corrente pela chave auxiliar, isto é, S_{a1} entrando em condução; a ressonância entre os capacitores C_{r1} e C_{r2} , ocasionando o descarregamento de C_{r1} e o carregamento de C_{r2} ; e a tensão em C_{r1} chegando a zero antes de deixar de existir circulação de corrente pela chave auxiliar. Em seguida, esta corrente chega à zero, fazendo com que a chave auxiliar S_{a1} seja desligada, enquanto L_{b2} começa a ser descarregado, e a tensão sobre o capacitor C_{r2} é descarregada até zero pela corrente I_{Lb2} . A mesma forma de onda da corrente é válida para a chave auxiliar S_{a2} , e as tensões nos capacitores ressonantes C_{r3} e C_{r4} .

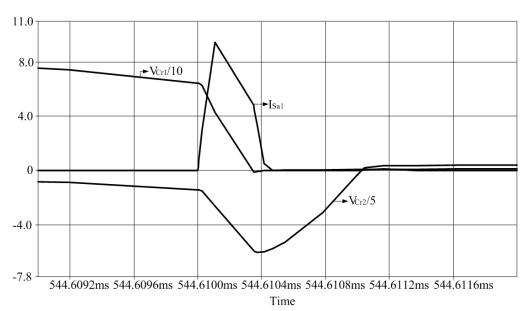
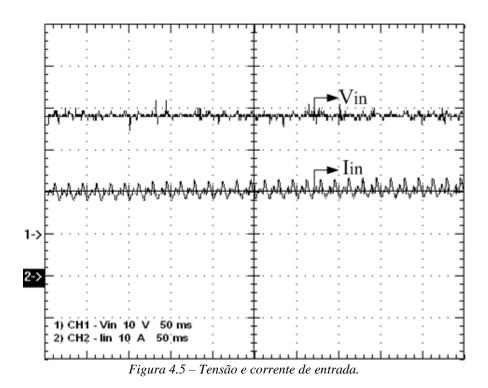



Figura 4.4 – Corrente na chave auxiliar S_{al} , tensão nos capacitores C_{rl} e C_{r2} .

4.4 - RESULTADOS EXPERIMENTAIS

Neste tópico são apresentados os principais resultados experimentais do sistema operando com carga nominal, de onde poderão ser observadas suas características e seu funcionamento. Serão ainda mostradas as principais formas de onda relacionadas ao conversor utilizando a células de comutação suave e realizando degraus de carga resistiva, validando a análise teórica e os projetos do conversor e do compensador.

A Figura 4.5 apresenta os resultados experimentais para a tensão e corrente de entrada do conversor. Observa-se que a tensão de entrada é de aproximadamente 28V e a corrente, de 20A.

A Figura 4.6 apresenta os resultados experimentais para a tensão e corrente de saída para a condição de carga nominal. Observa-se que a tensão de saída é de aproximadamente 180V e a corrente de saída, de 2,78A.

A Figura 4.7 apresenta a forma da onda da tensão nos capacitores de saída. Como enfatizado através da análise teórica, as tensões nos capacitores C_{F1} e C_{F2} são equilibradas entre si existindo uma pequena diferença em relação ao capacitor C_F , pois C_{F1} e C_{F2} dependem da relação de transformação e da dispersão dos indutores, enquanto que a tensão sobre o capacitor C_F depende apenas da razão cíclica.

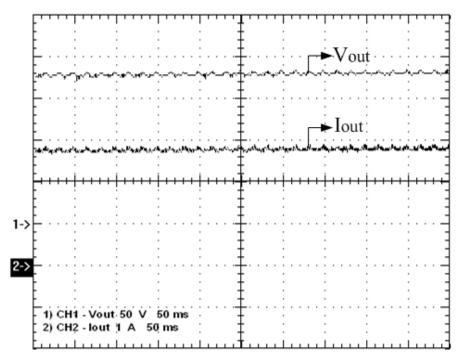


Figura 4.6 – Tensão e corrente de saída.

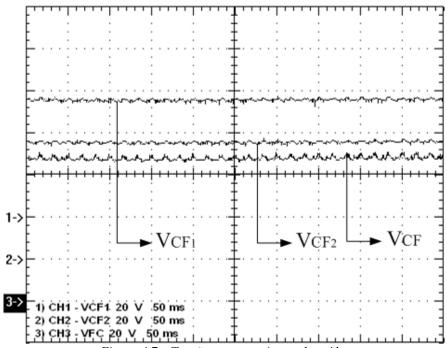


Figura 4.7 – Tensão nos capacitores de saída.

A Figura 4.8 apresenta a tensão e a corrente sobre a chave principal S₁. Pode-se observar através destas formas de onda que este interruptor entra em condução em modo ZVS como esperado.

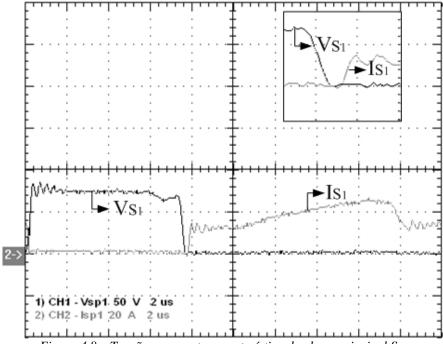


Figura 4.8 – Tensão e corrente característica da chave principal S_1 .

A Figura 4.9 apresenta a tensão e a corrente sobre a chave auxiliar S_{a1} . Pode-se observar por essas formas de onda que este interruptor entra em condução em modo ZCS, validando a análise teórica e a simulação.

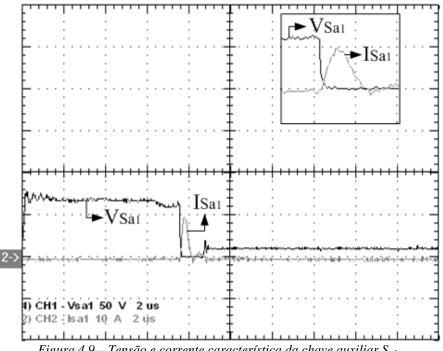


Figura 4.9 – Tensão e corrente característica da chave auxiliar S_{al} .

A Figura 4.10 apresenta as formas de onda características da corrente na chave auxiliar S_{a1} , tensão no capacitor ressonante C_{r1} e no capacitor C_{r2} , de onde se pode observar o mesmo comportamento obtido na simulação, como apresentado na Figura 4.4. Vale ressaltar que a

mesma forma de onda da corrente é válida para a chave auxilia S_{a2}, assim como as tensões nos capacitores ressonantes C_{r3} e $C_{r4.}$

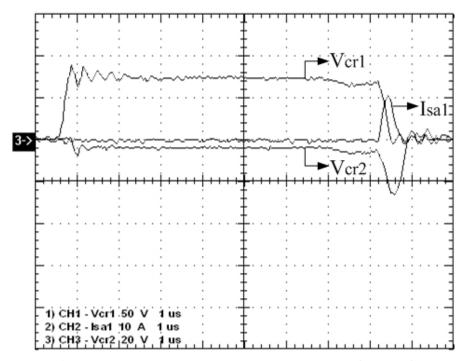


Figura 4.10 – Tensões nos capacitores C_{r1} e C_{r2} e corrente na chave auxiliar S_{a1} .

A Figura 4.11 mostra como se comportam a tensão e a corrente de saída aplicando degraus de carga de 500W para 250W e retornando para 500W. Pode-se observar através dessas formas de onda que, após os degraus, a tensão de saída volta ao regime permanente.

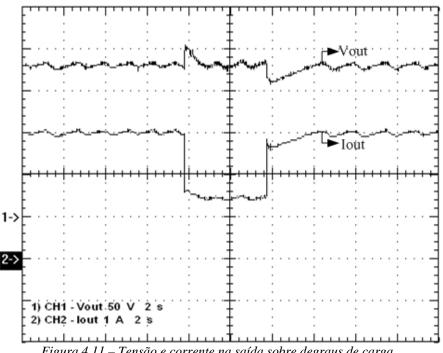


Figura 4.11 – Tensão e corrente na saída sobre degraus de carga.

A Figura 4.12 mostra as formas de onda de tensão e corrente na saída após um degrau de carga de 500W para 250W. Observa-se que a forma de onda da tensão de saída, após o degrau, sofre uma elevação de aproximadamente 30V (16,67%).

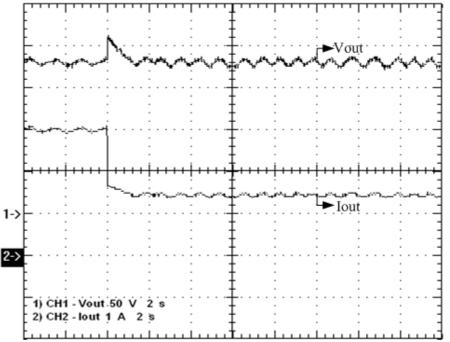


Figura 4.12 – Tensão e corrente na saída sobre degrau de carga de 500W para 250W.

A Figura 4.13 mostra as formas de onda de tensão e corrente na saída após um degrau de carga de 250W para 500W. Observa-se que a forma de onda da tensão de saída, após o degrau, sofre um afundamento de aproximadamente 25V (13,88%).

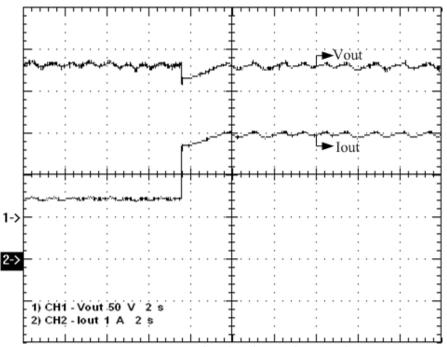


Figura 4.13 – Tensão e corrente na saída sobre degrau de carga de 250W para 500W.

4.4.1 - RENDIMENTO DO CONVERSOR

A Figura 4.14 mostra a curva de rendimento da topologia proposta em comparação com a topologia do conversor *boost* sem a célula de comutação suave.

A curva foi traçado desde um nível de 100W de potência, até a potência nominal do conversor, 500W. Observa-se que em todos os níveis de potências o conversor que utiliza a célula de comutação suave apresenta melhor rendimento do que o conversor que não a utiliza. Para potência nominal, a célula acarreta em uma melhoria de 4% no rendimento devido a redução das perdas por comutação.

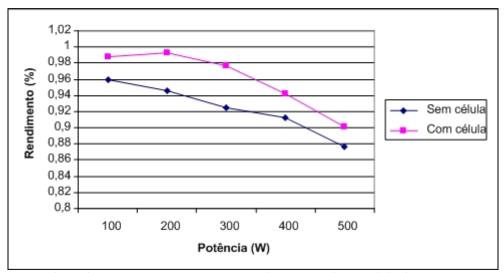


Figura 4.14 – Curva de rendimento comparativa entre a topologia que utiliza a célula de comutação suave com a topologia que não utiliza a célula.

4.5 - CONSIDERAÇÕES FINAIS

Os resultados experimentais comparados com os resultados de simulação validam a análise teórica do conversor e, mediante os degraus de carga, também foi validado o projeto do compensador apresentado durante este trabalho.

O rendimento obtido para o conversor que utiliza a célula de comutação é superior ao conversor que não utiliza a célula.

CAPÍTULO 5

CONCLUSÃO

Este trabalho foi realizado com o objetivo de aplicar uma célula de comutação suave a um conversor *boost* de alto ganho, para reduzir as perdas por chaveamento e melhorar assim o rendimento desde conversor.

Com o levantamento de algumas topologias existentes na literatura de conversores elevadores de tensão e de células de comutação suave, optou-se, para o desenvolvimento deste trabalho, a topologia *boost* de alto ganho proposta em [2] e a célula implementada em [17].

A análise qualitativa mostrou o princípio de operação, as formas de onda e os detalhes de comutação, de onde se concluiu que as chaves principais operam em modo ZVS e as chaves auxiliares, em ZCS. Já a análise quantitativa apresentou o equacionamento, bem como o ganho estático e seu respectivo gráfico, de onde se pode constatar a proximidade com o gráfico do conversor *boost* de alto ganho que não utiliza a célula de comutação. Vale ainda ressaltar o equilíbrio entre os capacitores de saída durante todo o período de chaveamento, onde a pequena diferença existente é devido ao fato de que a tensão nos capacitores C_{F1} e C_{F2} dependem da relação de transformação, da dispersão dos indutores, enquanto que a tensão sobre C_F depende apenas da razão cíclica.

Os resultados de simulação comprovaram o estudo desenvolvido, enquanto os resultados experimentais do protótipo montado em laboratório atestaram a correta análise e projeto dos circuitos.

O compensador, implementado digitalmente, garantiu que a tensão no barramento de saída fosse regulada em 180V, tornando a estratégia de controle mais simples e reduzindo o número de componentes utilizados.

O rendimento obtido neste trabalho, para potência nominal, foi de aproximadamente 91% enquanto que, para o conversor sem a célula, o rendimento foi de 87,67%. Conclui-se que a célula de comutação suave acarreta em uma melhoria no rendimento do conversor já que este opera sem perdas por comutação.

Diante do exposto acima, pode-se afirmar que o objetivo do trabalho foi alcançado, ou seja, efetivamente foi desenvolvido um conversor elevador de tensão que opera sem perdas por comutação, podendo ser aplicado à interligação de painéis fotovoltaicos à rede elétrica, pois este sistema requer um alto rendimento.

Como trabalhos futuros, podem-se sugerir uma comparação com outras configurações de células de comutação suave.

Pode-se incluir também como trabalho futuro o desenvolvimento de um inversor conectado ao barramento de saída do conversor *boost* de alto ganho desenvolvido neste trabalho, de forma a integrar o sistema fotovoltaico à rede elétrica convencional.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Mello, L. F. P., Análise e Projeto de Fontes Chaveadas. 1° Ed. São Paulo: Érica, 1996.
- [2] Henn, G. A. L., Conversor Boost Bidirecional de alto ganho aplicado a um sistema fotovoltaico. Fortaleza, Fevereiro de 2008. Dissertação de Mestrado, Universidade Federal do Ceará.
- [3] Tseng, K.C., Liang, T.J., *Novel high-efficiency step-up converter*. IEE Proc. Electr. Power Appl., Vol. 151, No.2, 2004, pp. 182-190.
- [4] Wai, R.J., Duan, R.Y., *High-efficiency DC/DC converter with high voltage gain*. IEE Proc. Electr. Power Appl., Vol. 152, No.4, 2005, pp. 793-802.
- [5] Baek. J.W., Ryoo, M.H., Kim, T.J., Yoo, D.W., Kim, J.S., *High Boost Converter Using Voltage Multiplier*. IEEE Industrial Electronics Conference, 2005, pp. 567-572.
- [6] Abutbul, O., Gherlitz, A., Berkovich, Y., Ioinovici, A., *Step-Up Switching-Mode Converter with High Voltage Gain Using a Switched-Capacitor Circuit*. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 50, No.8, 2003, pp. 1098-1102.
- [7] Abutbul, O., Gherlitz, A., Berkovich, Y., Ioinovici, A., *Boost Converter with High Voltage Gain Using a Switched Capacitor Circuit.* IEEE Circuit and System: Proceedings of the 2003 International Symposium on, Vol. 3, May 2003, pp.III-296 III299.
- [8] Gules, R., Pfitscher, L.L., Franco, L.C., *An Interleaved Boost DC-DC Converter with Large Conversion Ratio*. IEEE International Symposium on Power Electronics, 2003, ISIE'03, Vol.1, pp. 411-416.
- [9] Bascopé, G.V.T., Barbi, I., Generation of a Family of Non-Isolated DC-DC PWM Converters Using New Three-State Switching Cells. IEEE Power Electronic Specialists Conference, 2000, PESC'00, Vol.2, 2000, pp. 858-863.

- [10] Bascopé, G.V.T., Bascopé, R.P.T., Oliveira Jr, D.S., Vasconcelos, S.A., Antunes, S.L.M., Branco, S.G.C., A High Step-UP Converter Based on Three-State Switching Cell. International Symposium on Industrial Electronics, 2006, ISIE 2006, pp. 998-1003.
- [11] Alcazar, Y. J. A.; Bascopé, R. P. T.; Cabero, G. C.; Moura, L., *High Voltage Gain Boost Converter Based on Three-State Switching Cell and Voltage Multipliers*. In: VIII Conferência Internacional de Aplicações Industriais, 2008, Poços de Caldas-MG. INDUSCON 2008, 2008.
- [12] Oliveira Jr, D.S., Bascopé, R.P.T., Silva, C.E.A., *Proposal of a New High Step-Up Converter for UPS Applications*. International Symposium on Industrial Electronics, 2006, ISIE 2006.
- [13] Silva, E.A.S., Oliveira Jr, D.S., Oliveira, T.A.M, Tofoli, F.L., *A Novel Interleaved Boost Converter With High Voltage Gain For UPS Applications*. Congresso Brasileiro de Eletrônica de Potência COBEP 2007, vol. Único, CD-ROM.
- [14] Alexandre Borges Cristóvão., *Um conversor Boost com comutação suave aplicado a um sistema ininterrupto de energia*. Julho, 2005. Dissertação de Mestrado, Universidade Federal de Uberlândia. Faculdade de Engenharia Elétrica.
- [15] Silva, E.A.S., Coelho, E. A. A., Freitas, L. C., Vieira Jr., J. B., Farias, V. J., A Soft-Single-Switched Forward Converter With Low Stresses and Two Derived Structures. IEE Transactions on Power Electronics, vol. 19, n°2, March 2004.
- [16] Yoa, G., Chen, A., He, X., Soft Switching Circuit for Interleaved Boost Converters. IEE Transactions on Power Electronics, vol. 22, n°1, Jan 2007. pp 80-86.
- [17] Barreto, L. H. S. C, *Análise, Projeto e desenvolvimento de conversores para a concepção de uma unidade UPS "ON-LINE" não isolada*. Uberlândia, Janeiro de 2003. Tese de Doutorado. Universidade Federal de Uberlândia. Faculdade de Engenharia Elétrica.

- [18] Datasheet *PIC16F877*. Disponível em <http://www.alldatasheet.com>. Acesso em 23 de Novembro de 2008.
- [19] Borges, A. J. N, *Conversor Duplo Forward PWM a duas chaves principais e duas chaves auxiliares com comutação suave*. Uberlândia, Maio de 2006. Dissertação de Mestrado, Universidade Federal de Uberlândia. Faculdade de Engenharia Elétrica.
- [20] Silva, C. E. de A., *Inversor Monofásico Isolado em Alta Freqüência com Ampla Faixa de Tensão de Entrada*. Fortaleza, Janeiro de 2007. Dissertação de Mestrado, Universidade Federal do Ceará.
- [21] Menezes, L. M., *Projeto Inversol Desenvolvimento de uma fonte ininterrupta de energia com possibilidade de uso em sistema fotovoltaico*. Fortaleza, Julho de 2007. Dissertação de Mestrado, Universidade Federal do Ceará.
- [22] Johansson, B., *Improved Models for DC-DC Converters*. Lund University, Licentiate Thesis, Department of Industrial Electrical Engineering and Automation.
- [23] Catálogo Thornton. Disponível em <HTTP://www.thornton.com.br>. Acesso em 23 de Novembro de 2008.
- [24] Barbi, I., Eletrônica de Potência: Projeto de Fontes Chaveadas. Ed. do Autor, 2001.
- [25] Câmara, R. A., *Pré-Regulador com Derivação Central Baseado na Célula de Comutação de Três Estados para Aplicação em No-Breaks*. Fortaleza, Fevereiro de 2008. Dissertação de Mestrado, Universidade Federal do Ceará.

APÊNDICE A (METODOLOGIA DE PROJETO DO CONVERSOR BOOST DE ALTO GANHO UTILIZANDO CÉLULAS DE COMUTAÇÃO SUAVE)

A.1 - CONSIDERAÇÕES INICIAIS

A análise teórica do conversor boost de alto ganho que utiliza uma célula de comutação suave foi desenvolvida nos capítulos anteriores. Na análise qualitativa, foram apresentadas as següências de funcionamento deste conversor, enquanto na análise quantitativa foram desenvolvidos os equacionamentos dos esforços nos semicondutores.

A.2 - ROTEIRO DE PROJETO

 $V_{in \text{ min}} = 24V$

O procedimento de projeto do conversor será elaborado juntamente com um exemplo numérico, de acordo com determinados passos a serem seguidos.

Tensão de entrada mínima

A.2.1 - ESPECIFICAÇÃO DO PROJETO

 $V_{in_m\acute{a}x} = 32V$ Tensão de entrada máxima $P_0 = 500W$ Potência de saída do conversor

 $V_0 = 180V$ Tensão de saída do conversor

 $f_s = 50kHz$ $\eta = 0.9$ \rightarrow Frequência de chaveamento

Rendimento

 $P_{in} = \frac{P_0}{n} = 555,55W$ \to Potência de entrada

A.2.2 - DIMENSIONAMENTO DOS ELEMENTOS MAGNÉTICOS

O procedimento de dimensionamento dos elementos magnéticos para o conversor boost segue a seguinte metodologia:

Assumindo o mesmo valor adotado por [2] para as indutâncias, tem-se:

 $L_{h1} = 220 \mu H$ \rightarrow Indutância

$$k_u = 0.35$$
 Fator de utilização da janela

$$J_{\text{max}} = 350 A / cm^2$$
 \rightarrow Densidade de corrente

$$B_{\text{max}} = 0,2T$$
 \rightarrow Densidade de fluxo magnético

$$\eta = 0.9$$
 Rendimento

$$P_{in} = \frac{P_0}{n}$$
 \rightarrow Potência de entrada

$$I_{Lb1_mag_pico} = \frac{P_{in}}{V_{in} \cdot 2} = \frac{555,556}{28 \cdot 2} \cong 10A \Rightarrow \text{ Corrente de magnetização de pico}$$

no indutor

$$I_{Lb1-rms} = 14A$$
 \rightarrow Corrente rms no indutor

A partir da definição desses parâmetros pode-se calcular o produto das áreas como em [1]:

$$Ae \cdot Aw = \frac{L_{b1} \cdot I_{Lb1_rms} \cdot I_{Lb1_mag_pico} \cdot 10^{4}}{k_{u} \cdot J_{max} \cdot B_{max}} = 12,571cm^{4}$$
(A.1)

Para o produto de área calculado o núcleo de ferrite escolhido, de acordo com o material disponível em laboratório, é o NEE-65/33/26 da *Thornton*. Este núcleo apresenta as seguintes especificações [23]:

$$A_e \cdot A_w = 29,14cm^4$$
 \rightarrow Produto das áreas

$$A_e = 5{,}32cm^2$$
 \rightarrow Área da perna central do núcleo

$$A_w = 5,478cm^2$$
 \rightarrow Área da janela

O número de espiras deve ser calculado seguindo a equação (A.2): [24]

$$N_L = \frac{L_{b1} \cdot I_{Lb1_mag_pico} \cdot 10^4}{A_e \cdot B_{max}} = 20,677$$
 (A.2)

Para o projeto assumi-se N_L =20 *espiras*.

O entreferro do núcleo EE é calculado pela equação (A.3).

$$l_g = \frac{\mu_0 \cdot N_L^2 \cdot A_e \cdot 10^{-2}}{L_{\nu_1}} = 0,122cm \tag{A.3}$$

Onde:

 $\mu_0 = 4 \cdot \pi \cdot 10^{-7} \, H \, / \, m$ \rightarrow Permeabilidade magnética do vácuo

A área necessária para a condução da corrente é calculada a partir da equação (A.4): [25]

$$S_{w} = \frac{I_{Lb1_rms}}{J_{\text{max}}} = 0,04cm^{2}$$
 (A.4)

Para o projeto é escolhido o fio 19-AWG que possui uma seção de $S_{w-AWG19}=0,006527cm^2$ e o número de fios em paralelo é calculado seguindo a expressão (A.5).

$$n_{w} = \frac{S_{w}}{S_{w-4WG19}} \cong 6 \tag{A.5}$$

A execução física do indutor só é possível se o fator de utilização k_u for inferior a 0,6 como é demonstrado pela equação (A.6).

$$k_{u} = \frac{n_{w} \cdot N_{L} \cdot S_{w-iso-AWG19} + n_{w} \cdot N_{L} \cdot S_{w-iso-AWG19}}{A_{w}} = 0,3414$$
 (A.6)

O cálculo de k_u possui dois termos somados no numerador, pois dois indutores são enrolados em um núcleo, já que são acoplados.

A tabela A.1 apresenta o resumo do projeto dos elementos magnéticos do conversor *boost* de alto ganho.

Tabela A.1 - Resumo do Projeto dos indutores do conversor boost de alto ganho

Indutância	$L_{b1} = L_{b2} = L_1 = L_2 = 220 \mu H$
Núcleo escolhido	NEE - 65 / 33 / 26
Número de espiras	20espiras
Fio utilizado	19 <i>AWG</i>
Número de fios em paralelo	6

A.2.3 - DETERMINAÇÃO DA FREQÜÊNCIA DE RESSONÂNCIA

Utiliza-se uma frequência de chaveamento igual a 50kHz para o conversor e considera-se a seguinte relação de frequência:

$$\frac{f_s}{f_0} = 0,032404\tag{A.7}$$

Obtém-se uma frequência de ressonância de:

$$f_0 = 1,543MHz$$
 (A.8)

A.2.4 - DETERMINAÇÃO DO PARÂMETRO α_b

O valor de α_b depende da escolha do projetista, sendo que devem ser observadas as características do conversor de modo a garantir a característica PWM e redução dos picos de corrente nas chaves. O valor adotado para α_b é:

$$\alpha_b = 1,604 \tag{A.9}$$

A.2.5 - CÁLCULO DOS CAPACITORES E INDUTORES RESSONANTES

A relação (A.7) servirá para determinar os valores dos capacitores e indutores ressonantes.

Reescrevendo-se a equação (A.7), obtém-se:

$$\omega_{0b} = \frac{1}{\sqrt{L_{r2} \cdot C_{rb}}} \tag{A.10}$$

Substituindo-se o valor da equação (A.8) em (A.10), obtém-se:

$$L_{r2} \cdot C_{rb} = 1,064 \cdot 10^{-14}$$
 (A.11)

Através do parâmetro α_b , obtém-se a seguinte relação para L_{r2} e C_{rb} :

$$\frac{L_{r2}}{C_{rb}} = \left(\frac{\alpha_b \cdot V_{CF}}{I_{in_ef}}\right)^2 \tag{A.12}$$

Sabendo-se que os capacitores de saída estão equilibrados, adota-se por aproximação uma tensão sobre $V_{CF} = 60V$. Substituindo (A.9) e considerando que a corrente eficaz de entrada é o dobro da corrente eficaz no indutor L_{b1} , obtém-se:

$$\frac{L_{r2}}{C_{rb}} = 23,496 \tag{A.13}$$

Solucionando-se o sistema de equações formado por (A.11) e (A13), obtêm-se os valores de L_{r2} e C_{rb} , dados por:

$$L_{r2} = 0.5 \,\mu H \tag{A.14}$$

$$C_{rb} = 21,28nF$$
 (A.15)

Fixando-se o valor de C_{r3}, encontra-se o valore de C_{r4}:

$$C_{r3} = 27nF \tag{A.16}$$

$$C_{r4} = 100nF$$
 (A.17)

Os capacitores e o indutor de ressonância utilizados no protótipo foram de:

$$C_{r1} = C_{r3} = 27nF (A.18)$$

$$C_{r2} = C_{r4} = 100nF (A.19)$$

$$L_{r2} = 0.5 \,\mu H \tag{A.20}$$

Obtém-se o valor de X_b , que se enquadra nos limites encontrados no capítulo 2, através da análise de fases ($X_b \ge 1$):

$$X_b = 3.7$$
 (A.21)

A.2.6 - CÁLCULO DO INDUTOR RESSONANTE L_{r2}

O indutor ressonante L_{r2} possui um baixo valor de indutância, $0.5\mu H$. O procedimento de dimensionamento dos elementos magnéticos da célula ressonante segue a seguinte metodologia:

 $L_{r2} = 0.5 \mu H$ \rightarrow Indutância ressonante

 $k_u = 0.35$ Fator de utilização da janela do indutor ressonante

 $J_{\text{max}} = 350 A / cm^2$ \rightarrow Densidade de corrente

 $B_{\text{max}} = 0,2T$ \rightarrow Densidade de fluxo magnético

 $I_{nico} = 24.65A$ \rightarrow Corrente de pico utilizada para cálculo do indutor

 L_{r2}

$$I_{rms} = 14A$$
 \rightarrow Corrente rms utilizada para cálculo do indutor L_{r2}

A partir da definição desses parâmetros pode-se calcular o produto das áreas como em [1]:

$$(Ae \cdot Aw)' = \frac{L_{r2} \cdot I_{rms} \cdot I_{pico} \cdot 10^4}{k_u \cdot J_{max} \cdot B_{max}} = 0.07cm^4$$
(A.21)

Para o produto de área calculado o núcleo de ferrite escolhido, de acordo com o material disponível em laboratório, é o NEE-20/10/5 da *Thornton*. Este núcleo apresenta as seguintes especificações [23]:

$$(A_e \cdot A_w) = 0.148428cm^4$$
 \rightarrow Produto das áreas

$$A_e' = 0.31cm^2$$
 \rightarrow Área da perna central do núcleo

$$A_{w}' = 0,4788cm^{2}$$
 \rightarrow Área da janela

O número de espiras deve ser calculado seguindo a equação (A.22): [24]

$$N_{L}' = \frac{L_{r2} \cdot I_{pico}' \cdot 10^{4}}{A_{e}' \cdot B_{max}} = 1,988$$
 (A.22)

Para o projeto assumi-se N_L '=2 *espiras*.

O entreferro do núcleo EE é calculado pela equação (A.23).

$$l_g' = \frac{\mu_0 \cdot N_L^{'2} \cdot A_e' \cdot 10^{-2}}{L_{r2}} = 0,031cm$$
 (A.23)

Onde:

 $\mu_0 = 4 \cdot \pi \cdot 10^{-7} \, H \, / \, m$ \rightarrow Permeabilidade magnética do vácuo

A área necessária para a condução da corrente é calculada a partir da equação (A.24): [25]

$$S_{w}' = \frac{I_{rms}'}{J_{max}} = 0,04cm^{2}$$
 (A.24)

Para o projeto é escolhido o fio 22-AWG que possui uma seção de $S_{w-AWG22}=0,003255cm^2$ e o número de fios em paralelo é calculado seguindo a expressão (A.25).

$$n_{w}' = \frac{S_{w}'}{S_{w-AWG22}} \cong 12$$
 (A.25)

A execução física do indutor só é possível se o fator de utilização k_u ' for inferior a 0,6 como é demonstrado pela equação (A.26).

$$k_{u}' = \frac{n_{w}' \cdot N_{L}' \cdot S_{w-iso-AWG22}}{A_{w}'} = 0,2011$$
(A.26)

A tabela A.2 apresenta o resumo do projeto dos elementos magnéticos da célula ressonante.

Tabela A.2 – Resumo do Projeto dos indutores ressonantes

Indutância	$L_{r1} = L_{r2} = 0.5 \mu H$
Núcleo escolhido	NEE – 20/10/5
Número de espiras	2espiras
Fio utilizado	22AWG

Número de fios em	12
paralelo	12

A.3 - CÁLCULO DOS CAPACITORES

Foi utilizado os mesmo capacitores adotado por [2].

Tabela A.3 – Capacitores utilizados

Tipo	EPCOS B43840
Capacitância	$680\mu F$
Corrente Máxima	3,2A
Tensão Máxima	250V

A.4 - DIMENSIONAMENTO DOS SEMICONDUTORES

Para especificar estes componentes utilizaram-se os dados obtidos através da simulação, e não foram utilizados os mesmos MOSFET's adotados por [2].

Os semicondutores escolhidos tanto para as chaves principais quanto para as auxiliares são do tipo:

Tabela A.4 – Semicondutores utilizados

Tipo	IRFP206N
Corrente Máxima	50 <i>A</i>
Tensão Máxima	200V
Resistência Série	$40m\Omega$

A.5 - DIMENSIONAMENTO DOS DIODOS

Para especificar estes componentes utilizaram-se os dados obtidos através da simulação. Os diodos *boost* utilizados são do tipo:

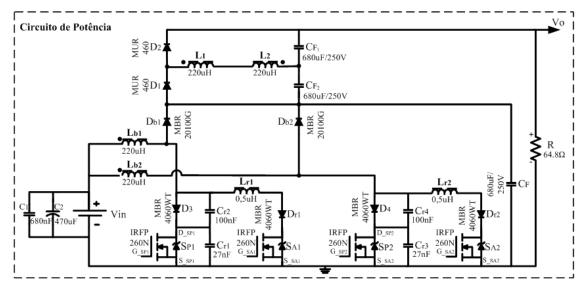
Tabela A.5 – Diodos boost utilizados

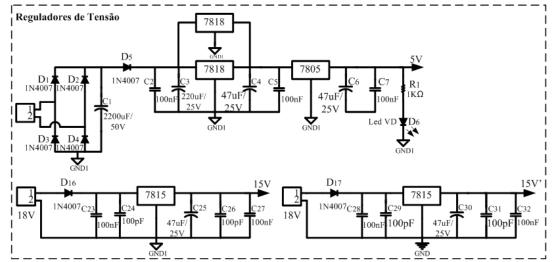
Tipo	SCHOTTKY MBR20100G
Corrente Máxima	20 <i>A</i>
Tensão Máxima	100V

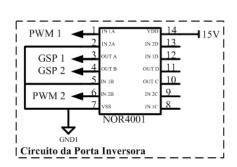
Para os diodos da célula de acoplamento foram utilizados os mesmos adotados por [2]:

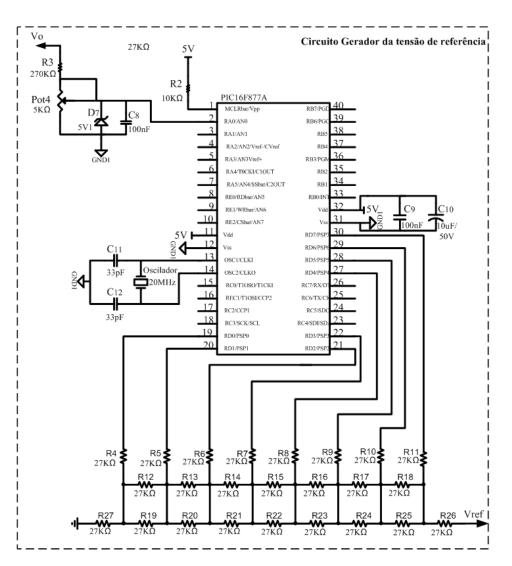
Tabela A.6 – Diodos da célula de acoplamento magnético utilizados

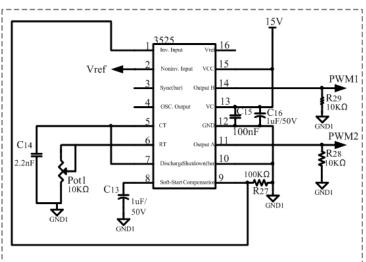
Tipo	MUR460
Corrente Máxima	4A
Tensão Máxima	600V


Os diodos da célula de comutação utilizados são do tipo:


Tabela A.7 – Diodos da célula de comutação utilizados


Tipo	SCHOTTKY MBR4060WT
Corrente Máxima	40A
Tensão Máxima	60V


APÊNDICE B


(ESQUEMÁTICO DO CONVERSOR *BOOST* DE ALTO GANHO UTILIZANDO CÉLULAS DE COMUTAÇÃO SUAVE)

