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a  b  s  t  r  a  c  t

This  paper  presents  a new  linear  active  power  flow  solution  method.  The  new  linear  active  power  flow
presents  a better  performance  to  calculate  MW  power  flows,  as opposed  to  MW  flows,  calculated  in
classical  model  with  a  DC power  flow.  The  aforesaid  proposed  method  is based on  a decoupling  princi-
ple. Therefore,  the  voltage  angles  and  voltage  magnitudes  are  calculate  in decoupled  forms.  A  complete
demonstration  of  the  proposed  method  is presented.  The  algorithm  of  new  method  has  been  tested  by
extensive  numerical  studies.  This  paper  gives  details  of  the  method’s  performance  on  various  classical
systems.  All  the  results  are  compared  with  those  from  the Newton–Raphson  power  flow  and  classical  DC
power  flow.

© 2011 Elsevier B.V. All rights reserved.

. Introduction

The power flow calculation is one of the most commonly used tools in power system engineering. For that reason, the history of power
ow calculation is a relatively long one. Since the invention and widespread of computers, in the 1950s and 1960s, many methods for
olving the power flow problem have been developed [1].

The classical direct current (DC) power flow technique calculates only real power flows within power systems networks. The DC power
ow method was especially attractive in the middle of the twentieth century, when computer access was expensive, and there was  a real
eed to reduce central processing unit (CPU) time on all computational activities. Presently, the DC power flow method is used extensively

n power system analysis and power market applications [2,3]. Several examples are presented herewith: (A) Contingency Analysis –
ontingency analysis is the focal point in evaluating power system security. The DC power flow method is preferred in this analysis [4];  (B)
alculation of Power Transfer Distribution Factors (PTDF) – The PTDF represents the sensitivities of lines flow with respect to generation
hanges [4].  The PTDFs are used in transmission congestion management applications and also in the calculation of Locational Marginal
rice (LMP) [5,6]; (C) Calculation of Line Outage Distribution Factors (LODF) – The LODF measures the sensitivity of a line flow against the
emoval of another line. The LODF is used in the calculation of available transfer capability (ATC), as well as developing constraints for SPD
Scheduling, Pricing and Dispatch) and Security Constrained Unit Commitment (SCUC) programs [5,7,8];  (D) Transmission Interchange
imit Analysis – The Transfer Limit Table Generator (TLTG) and POLY analyses are transmission interchange limit analysis functions in
ower System Simulator for Engineering (PSS/E) [7],  which estimate the import/export limits between two  areas (“study system” and
opposing system”) using linearized network model. The POLY function differs from the TLTG in that it considers simultaneous generation
hifts in two opposing systems to maximize study system import/export; (E) Market Clearing Engine (MCE) – The Scheduling, Pricing,
nd Dispatch (SPD), Security Constrained Unit Commitment (SCUC) and Simultaneous Feasibility Test/Network Application (SFT/NA) are
ore programs of an MCE. The SPD and SCUC are security constrained optimal power flow programs, often based on the linear DC power
ow equations. The objective is to minimize the total cost of generation and reserves, subject to a set of constraints including power

alance, ancillary services, resources operating limits and transmission security constraints; (F) Financial Transmission Right – Financial
ransmission right (FTR), also known as firm transmission right, is a financial instrument for hedging risks from transmission congestion
osts on constrained lines [9].  A linear programming (LP) problem is formulated to clear the FTR auction. The objective function of the LP
roblem is to maximize the revenues from FTR. The thermal limits of the transmission lines are formulated as power flow constraints of

∗ Corresponding author. Tel.: +55 85 32413528.
E-mail address: ailson@ufc.br (A.P. de Moura).

378-7796/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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he LP problem. Others developments in this area are comparisons of MW flows obtained from DC and AC power flow solutions [10], and
ethods that try to account for the Mvar flows that are absent from DC models [11].
The advantages of a DC model are as follows:

a) Its solutions are non-iterative, reliable and unique;
b) Its methods and software are relatively simple;
c) Its models can be solved and optimized efficiently, particularly in the demanding area of contingency analysis;
d) Its network data is minimal and relatively easy to obtain;
e) Its linearity fits the economic theory on which much of transmission-oriented market design is based;
f) Its approximated MW flows are reasonably accurate, at least for the heavily loaded branches that might constrain system operation.

These are powerful attractions and, general, items (a)–(e) are mostly valid. However, it is well known that the DC power flow method
ffers only approximate solutions, especially when the R/X ratios for transmission lines are large and bus voltages are highly non-uniform.
his inaccuracy leads to compromised system reliability when used in system security analysis, and can have economic consequences by
hanging the LMP in security constrained economic dispatch or FTR awards in FTR auctions [8].

The method described in this paper presents a better performance to calculate MW power flows than MW flows calculates in classical
odel of a DC power flow. Great importance is presented to the fact that this proposed method, is derived from some theoretical bases. The
ethod is based on decoupling principles, and it uses a procedure that solves the voltage angles and voltage magnitudes in decoupled forms.

he new method can calculate active and reactive power flows. However, due to page limit, the reactive power flows will be presented
nd validated in future paper.

The paper is organized as follows: Firstly, a complete demonstration of the proposed method is presented, inclusive with numerical
xamples; all the necessary approximations and details required by proposed method are identified. Test results are presented with some
elevant conclusions duly reported.

. Development of the linear power flow V-theta

Consider expressions for the active power flows in a transmission line. These expressions are explained briefly in Appendix A, where a
ummary of the DC power flow is presented. The following approximations are made:

V2
k

∼= factorVk (1)

V2
m

∼= factorVm (2)

VkVm ∼= factorV1km (3)

sin �km
∼= �km (4)

cos �km
∼= 1 (5)

Then, the linearized expressions for the active power flow in a transmission line are as follows:

PLIN
km = factorVkgkm − factorV1kmgkm − factorV1kmbkm�km (6)

PLIN
mk = factorVmgkm − factorV1mkgkm + factorV1mkbkm�km (7)

here the superscript “LIN” means linearized.
gkm and bkm are respectively series conductance and series susceptance.

factorVk = cVk + d

factorVm = eVm + g

c, d, e, and g are constants, i.e. the factorVk and factorVm are approximated as linear functions; where Vk and Vm are numerical values of
oltage magnitudes read from the data file.

factorV1km is the linear approximation of the tangent plane to a surface at a point stays close to the surface near the point [12]. At point
a, b) factorV1km = f(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

The factorVk and factorVm are calculated at intervals of 0.005 p.u. The factorV1km is calculated at point a = Vk + k and b = Vm + k both in
.u., where k is a constant. Therefore, the local linearization of f(x, y) = xy at point (a, b) is

factorV1km = (Vm + k)x + (Vk + k)y − VkVm − kVk − kVm − k2 (8)

When x = Vk and y = Vm in Eq. (8),  factorV1km is

factorV1km = VkVm − k2 (9)

The calculation of the voltage angles and voltage magnitudes, in a linearized form, are made as follow: Two  equations of active power
ismatches (�P) and two equations of power reactive mismatches (�Q), are written in matrix form and they are linearized. The first two
quations have �P  and �Q  with the voltage angles as unknowns. The next two  equations present �P  and �Q  with voltage magnitudes as
nknowns. The four equations form an overdetermined system of linear equations, which is solved by a mathematical procedure already
nown [13,14].

The others assumptions made within the linear power flow V-theta technique are as follows:
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. All busbar PQ voltage magnitudes initializes at 1.0 p.u.

. The voltage magnitudes in the PV buses are kept in the duly specified values.

. All busbar voltage angles initializes at zero radian.

. Omit all effects from phase shift transformers.

. The taps of in-phase transformers are being kept in the calculations for the formation of all equations.

. The equations of active power mismatches are used at buses type PV and PQ

. The equations of reactive power mismatches are used only at buses type PQ.
The shunts in elements of susceptance Bkk of all equations are omitted and they are included only in the equations of reactive power

mismatches in each bus as reactive power generated, i.e.:

Q G
k

= ∑
m ∈ k(bsh

km
/2) factor Vk + bshunt

k
factor Vk, where bsh

km
is shunt admittance of the line and bshunt

k
is shunt capacitor bank or shunt

eactor bank. The other variables have been defined previously.

.1. Development of the equations linearized of �P  and �Q  with the voltage angles as unknowns.

Consider the basic equations of power flow

�Pk = Psp
k

− Vk

NB∑
m=1

Vm(Gkm cos �km + Bkm sin �km) = 0 (10)

�Qk = Q sp
k

− Vk

NB∑
m=1

Vm(Gkm sin �km − Bkm cos �km) = 0 (11)

here NB is the number of buses of the network.
�Pk + j�Qk, complex power mismatch at bus k; Gkm + jBkm, (k, m)th element of bus admittance matrix; �k, Vk, voltage angle, magnitude

t bus k; �km, �k − �m; Psp
k

+ jQ sp
k

, scheduled complex power at bus k.
The approximations considered in Eqs. (4) and (5) are used in Eqs. (10) and (11). Thereafter, the expressions (10) and (11) are modified

s:

�Pk
∼= Psp

k
− V2

k Gkk − Vk

NB∑
m = 1
m /= k

Vm(Gkm + Bkm�km) ∼= 0 (12)

�Qk
∼= Q sp

k
+ V2

k Bkk + Vk

NB∑
m = 1
m /= k

Vm(Bkm − Gkm�km) ∼= 0 (13)

Linear power flow V-theta initializes voltage angles as zero radian. Therefore, when the angles are equal to zero, the terms of Eqs. (12)
nd (13) that contains angular differences, do not influence the numerical values of mismatches of active and reactive power. Therefore,
qs. (12) and (13) can be written as follows:

�Pk
∼= Psp

k
− V2

k Gkk − Vk

NB∑
m=1
m /=  k

VmGkm
∼= Vk

NB∑
m=1
m  /=  k

VmBkm�km
∼= 0 (14)

�Qk
∼= Q sp

k
+ V2

k Bkk + Vk

NB∑
m = 1
m /= k

VmBkm
∼= Vk

NB∑
m = 1
m /= k

VmGkm�km
∼= 0 (15)

n matrix form:
[�Pk] ∼= [J1][��k] (16)

[�Qk] ∼= [J3][��k] (17)
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However, the bus number 1 is considered as swing bus. Then k = 2, 3,. . .,  NB. Where

[��k] = [�k] − [0]

[J1] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J1km = VkVm(−Bkm)

J1kk =
NB∑

m = 1
m /= k

VkVmBkm

[J3] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J3km = −VkVmGkm

J3kk =
NB∑

m = 1
m /= k

VkVmGkm

(18)

The dimensions of the respective matrices [J1] and [J3] are respectively (NPQ + NPV) × (NPQ + NPV) and (NPQ) × (NPQ + NPV), where
PQ is the number of buses type PQ and NPV is the number of buses type PV occur. Since those assumptions 6 and 7 are considered.

The linearization of the equations is completed as follow. Using the approximations made in Eqs. (1)–(5) at power mismatches Eqs. (10)
nd (11) and using approximations made in (1)–(3) at Eq. (18):

�PLIN
k = Psp

k
− factorVkGkk −

NB∑
m = 1
m /= k

factorV1km(Gkm + Bkm�km) (19)

�Q LIN
k = Q sp

k
− factorVk(−Bkk) −

NB∑
m = 1
m /= k

factorV1km(Gkm�km − Bkm) (20)

Eqs. (19) and (20) linearized in matrix form are represented as follows:

[�Pk]LIN = [J1]LIN[��k]LIN (21)

[�Qk]LIN = [J3]LIN[��k]LIN (22)

here [��k]LIN = [�k]LIN − [0]

[J1]LIN =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J1LIN
km

= factorV1km(−Bkm)

J1LIN
kk

=
NB∑

m = 1
m /= k

factorV1kmBkm

[J3]LIN =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J3LIN
km

= −factorV1kmGkm

J3LIN
kk

=
NB∑

m = 1
m /= k

factorV1kmGkm

(23)

.2. Development of the equations linearized of �P  and �Q  with the voltage magnitudes as unknowns

The approximations considered in Eqs. (4) and (5) are used again in Eqs. (10) and (11). Then, the expressions (10) and (11) are modified
s such:

�Pk
∼= Psp

k
− Vk

NB∑
m=1

VmBkm�km
∼= Vk

NB∑
m=1

VmGkm (24)

�Qk
∼= Q sp

k
− Vk

NB∑
m=1

VmGkm�km
∼= Vk

NB∑
m=1

Vm(−Bkm) (25)

In the following equations, the shunts are omitted, and the taps of in-phase transformers are kept. Thus, Eqs. (26) and (27) are
pproximately equal to a zero.
Vk

NB∑
m=1

Gkm
∼= 0 (26)
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Vk

NB∑
m=1

(−Bkm) ∼= 0 (27)

Subtracting Eq. (26) on right side of Eq. (24) and subtracting Eq. (27) on right side of Eq. (25) and rearranging the terms we obtain

�Pk
∼= Psp

k
− Vk

NB∑
m=1

VmBkm�km
∼= Vk

NB∑
m=1

Gkm(Vm − 1) (28)

�Qk
∼= Q sp

k
− Vk

NB∑
m=1

VmGkm�km
∼= Vk

NB∑
m=1

(−Bkm)(Vm − 1) (29)

The linearization of Eq. (28) and (29) is completed as follow: first the PV buses and PQ buses are separated in summation of the right
ide. Then, the linear approximation of the tangent plane to a surface at a point, staying close to the surface near the point, is made using
q. (9).

Vk

NB∑
m=1

Gkm(Vm − 1) =
NB∑

m = 1
m ∈ PV
REF

fatorV1kmGkm − Vk

NB∑
m = 1
m ∈ P
REFV

Gkm +
NB∑

m = 1
m ∈ PQ

VkGkm(Vm − 1) − k2
NB∑

m = 1
m ∈ PQ

Gkm (30)

Vk

NB∑
m=1

(−Bkm)(Vm − 1) =
NB∑

m = 1
m ∈ PV
REF

fatorV1km(−Bkm) − Vk

NB∑
m = 1
m ∈ PV
REF

(−Bkm) +
NB∑

m = 1
m ∈ PQ

Vk(−Bkm)(Vm − 1) − k2
NB∑

m = 1
m ∈ PQ

(−Bkm) (31)

Substituting Eqs. (30) and (31) in Eqs. (28) and (29) and rearranging the terms:

�Pk
∼= Psp

k
−

NB∑
m=1

factorV1kmBkm�km −
NB∑

m = 1
m ∈ PV
REF

factorV1kmGkm +
NB∑

m = 1
m ∈ PV
REF

VkGkm + k2
NB∑

m = 1
m ∈ PQ

Gkm
∼= Vk

NB∑
m = 1
m ∈ PQ

Gkm�Vm (32)

�Qk
∼= Q sp

k
−

NB∑
m=1

factorV1kmGkm�km −
NB∑

m = 1
m ∈ PV
REF

factorV1km(−Bkm) − Vk

NB∑
m = 1
m ∈ PV
REF

(−Bkm) + k2
NB∑

m = 1
m ∈ PQ

(−Bkm) ∼= Vk

NB∑
m = 1
m ∈ PQ

(−Bkm)�Vm (33)

here
m ∈ PV,  REF The bus m belongs to the set of PV buses and swing bus.
m ∈ PQ The bus m belongs to the set of PQ buses.

�Vm = Vm − 1

Linear power flow V-theta initializes the voltage magnitudes of buses type PQ as 1.0 p.u. Later on, the terms on the right side of Eqs.
32) and (33) are null. Therefore, Eqs. (19) and (32) are approximately equal. Same comments apply to Eqs. (20) and (33). Thus, Eqs. (32)
nd (33) can be written as follows:

�PLIN
k

∼= Vk

NB∑
m = 1
m ∈ PQ

Gkm�Vm ∼= 0 (34)

�Q LIN
k

∼=
NB∑

m = 1
m ∈ PQ

(−Bkm)�Vm ∼= 0 (35)
n matrix form:

[�Pk]LIN ∼= [J2]LIN[�Vk]LIN (36)

[�Qk]LIN ∼= [J4]LIN[�Vk]LIN (37)
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here

[�Vk]LIN = [Vk]LIN − [1]

[J2]LIN =

⎧⎨
⎩

J2LIN
km

= VkGkm

J2LIN
kk

= VkGkk

[J4]LIN =

⎧⎨
⎩

J4LIN
km

= Vk(−Bkm)

J4LIN
kk

= Vk(−Bkk)

(38)

The dimensions of the respective matrices [J2]LIN and [J4]LIN are respectively (NPQ + NPV) × (NPQ) and (NPQ) × (NPQ). Since those
ssumptions 6 and 7 are considered.

.3. Solution of the overdetermined system of linear equations

An overdetermined system of linear equations is obtained, when the set of linear equations (22), (23), (36) and (37) are used to calculate
he voltage angles and the voltage magnitudes. Then, the process to calculate the voltage angles and voltage magnitudes linearized is
ompleted as follows.

Eq. (23) is multiplied by [J2]LIN([J4]LIN)
−1

[J2]LIN([J4]LIN)
−1

[�Qk]LIN = [J2]LIN([J4]LIN)
−1

[J3]LIN[��k]LIN (39)

Subtracting Eq. (22) minus Eq. (39):

[�Pk]LIN − [J2]LIN([J4]LIN)
−1

[�Qk]LIN = {[J1]LIN − [J2]LIN([J4]LIN)
−1

[J3]LIN}[��k]LIN (40)

Solve Eq. (40) for voltage angles:

[��k]LIN = {[J1]LIN − [J2]LIN([J4]LIN)
−1

[J3]LIN}
−1

{[�Pk]LIN − [J2]LIN([J4]LIN)
−1

[�Qk]LIN} (41)

In compact form:where[
��k

]LIN =
[
[A1]LIN

]−1[
�Peq

]LIN
(42)

[A1]LIN =
[

[J1]LIN − [J2]LIN([J4]LIN)
−1

[J3]LIN
]

(43)

[
�Peq

]LIN =
[

[�Pk]LIN − [J2]LIN([J4]LIN)
−1

[�Qk]LIN
]

(44)

Eq. (42) is used to calculate the voltage angles.

Voltage magnitudes are calculated as follows: Eq. (36) is multiplied by [J3]LIN([J1]LIN)
−1

[J3]LIN([J1]LIN)
−1

[�P]LIN = [J3]LIN([J1]LIN)
−1

[J2]LIN[�Vk]LIN (45)

Subtracting Eq. (37) minus Eq. (45)

[�Qk]LIN − [J3]LIN([J1]LIN)
−1

[�Pk]LIN = {[J4]LIN − [J3]LIN([J1]LIN)
−1

[J2]LIN}[�Vk]LIN (46)

Solve Eq. (46) for voltage magnitudes:

[�Vk]LIN = {[J4]LIN − [J3]LIN([J1]LIN)
−1

[J2]LIN}
−1

{[�Qk]LIN − [J3]LIN([J1]LIN)
−1

[�Pk]LIN} (47)

In compact form:where

[�Vk]LIN = [[A2]LIN]
−1

[�Qeq]LIN (48)

[A2]LIN = [[J4]LIN − [J3]LIN([J1]LIN)
−1

[J2]LIN] (49)

[�Qeq]LIN = [[�Qk]LIN − [J3]LIN([J1]LIN)
−1

[�Pk]LIN] (50)

Eq. (48) is used in the calculation of voltage magnitudes.
Fig. 1 shows the basic flowchart of the method, where DP is the power active mismatch and DQ is the power reactive mismatch.

Hence, a numerical example is presented to clarify the new linear active power flow. The results of the enclosed tables herewith, are

alculated by the following equations:

Perror = (PAC − PLIN) (51)
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READ DATA

CALCULATE
factorV, factorV1,

 dP and dQ

  FORM
   [A2]

CALCULATE
Voltage Magnitudes

CALCULATE
Voltage Angles

CALCULATE
Power Flows

PRINT
Results

CALCULATE
factorV, factorV1,

 dP and dQ

  FORM
   [A1]

 

Fig. 1. Basic flowchart of the linear power flow V-theta.

Table 1
Bus data system of 4 buses.

Bus No. Type Voltage (p.u.) Phase angle (rd) Generator P (p.u.) Generator Q (p.u.) Load P (p.u.) Load Q (p.u.)

1 Swing 1.0 0.0 0.0 0.0 0.0 0.0
2  PQ 1.0 0.0 0.0 0.0 0.5 0.2

w
fl

2

f

T
B

3  PQ 1.0 0.0 0.0 0.0 0.6 0.1
4 PV  1.05 0.0 0.6 0.0 0.0 0.0

PPerror = (PAC − PLIN)
PAC

× 100% (52)

PAerror =
∑

abs(PAC − PLIN) (53)

here Perror is the difference between AC power flow and linear decoupled power flow/DC power flow (MW);  PPerror is the active power
ow percent error; PAerror is the sum of absolute values of Perror

.4. Simulation of a small system
In this particular item, we will give a numerical example to illustrate the linear power flow V-theta. We  will take as example, the
our-bus system, whose data are shown in Tables 1 and 2. These admittance series of the five lines are in p.u.

The calculations follow the basic flowchart.

able 2
ranch data – system of 4 buses.

From bus To bus Serie admittance (p.u.)

1 3 0.2-J3
1 4 0.5-J5
2 3 1-J3
2  4 0.5-J5
3 4 1-J3
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. Calculation of factorVk and factorV1km

[Vk] =

⎡
⎢⎣

1.0001
1.0002
1.0003
1.0504

⎤
⎥⎦ [factorV1km] =

⎡
⎢⎢⎣

0.9999991−3
1.0499991−4
0.9999992−3
1.0499992−4
1.0499993−4

⎤
⎥⎥⎦ [factorVk] =

⎡
⎢⎣

1.00001
1.00002
1.00003
1.10254

⎤
⎥⎦

Example: linear function

factorV4 = 2.095001 × V4 − 1.097251 = 2.095001 × 1.05 − 1.097251 = 1.10250005

Equation of tangent plane (8):  factorV12−4 = (1.05 + 0.001) × 1 + (1 + 0.001) × 1.05 − 1.052051 = 1.0499999
. Calculation of linearized power mismatches (p.u.): Eqs. (19) and (20).

[�P]LIN =
[ −0.4750

−0.5500
0.4950

]
[�Q ]LIN =

[
0.0499
0.0499

]

Example: Eqs. (19) and (20).

�PLIN
2 = Psp

k
− factorV2G22 − (factorV12−1G21 + factorV12−3G23 + factorV12−4G24)

�Q LIN
2 = Q sp

k
− factorV2(−B22) − (factorV12−1(−B21) + factorV12−3(−B23) + factorV12−4(−B24))

Since voltage angles are null. Therefore:

�PLIN
2 = 0 − 0.5 − 1 × 1.5 − (0 + 0.999999 × (−1) + 1.049999 × (−0.5)) = −0.4750

�Q LIN
2 = 0 − 0.2 − 1 × (−(−8)) − (0 + 0.999999 × (−3) + 1.049999 × (−5)) = −0.0499

. Calculation of the matrices [J1], [J2], [J3] and [J4]: Eqs. (21) and (38).

[J1] =
[

8.249992
−2.999997
−5.249995

−2.999997
9.149991

−3.149997

−5.249995
−3.149997
13.649987

]
, [J2] =

[
1.500000 −1.000000
−1.000000 2.200000

−0.525000 −1.050000

]

[J3] =
[

−1.524999
0.999999

0.999999
−2.249998

0.524999
1.049999

]
, [J4] =

[
8.000000 −3.000000

−3.000000 9.000000

]

Example:

J1LIN
23 = factorV123(−B23) = 0.999999 × (−3) = 2.999997, J1LIN

33 = factorV131B31 + factorV132B32 + factorV134B34

= 0.999999 × 3 + 0.999999 × 3 + 1.049999 × 3 = 9.149991

J2LIN
42 = V4G42 = 1.05(−0.5) = −0.525, J222 = V2G22 = 1 × 1.5 = 1.5

J3LIN
34 = −factorV134G34 = −1.049999(−1) = 1.049999 J3LIN

22 = factorV121G21 + factorV123G23 + factorV124G24

= 0 + 0.999999(−1) + 1.049999(−0.5) = 1.524999

J4LIN
32 = V3(−B32) = 1(−3) = −3, J4LIN

33 = V3(−B33) = 1(−(−9)) = 9

. Calculation of voltage magnitudes (p.u.): Eq. (48).⎡ ⎤

[Vk] = ⎢⎣

1.00001
0.99742
0.99463
1.05004

⎥⎦
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Table  3
Maximum error – sum of errors (MW).

Test system 4 buses DC power flow Linear power flow V-theta

Max(abs(PPerror)) (%) 14.37 5.14
PAerror (MW)  4.14 1.68

M

5

6

7

8

9

f

r

V
e
fl

Max(abs(Perror)) (MW)  2.57 0.92

ax(abs) is the maximum absolute value.

. Calculation of factorVk and factorV1km

[factorVk] =

⎡
⎢⎣

1.00001
0.99482
0.98923
1.10254

⎤
⎥⎦ , [factorV1km] =

⎡
⎢⎢⎣

0.9945925661−3
1.0499990001−4
0.9919900892−3
1.0472515442−4
1.0443222443−4

⎤
⎥⎥⎦

. Calculation of linearized power mismatches (p.u.): Eqs. (19) and (20).

[�P]LIN =
[ −0.4766

−0.5411
0.4879

]
, [�Q ]LIN =

[
0.0540
0.0897

]

. Calculation of the matrices [J1], [J2], [J3] and [J4]: Eqs. (21) and (38).

[J1] =
[

8.2122
−2.9759
−5.2362

−2.9759
9.0927

−3.1330

−5.2362
−3.1330
13.6192

]
, [J2] =

[
1.4961 −0.9974
−0.9946 2.1881
−0.5250 −1.0500

]

[J3] =
[

−1.5156
0.9920

0.9920
−2.2352

0.5236
1.0443

]
, [J4] =

[
7.9790 −2.9921

−2.9838 8.9513

]
. Calculation of voltage angles (degree): Eq. (42).

[
�
]

=

⎡
⎢⎣

0
−7.0100
−6.4337
−2.12350

⎤
⎥⎦

. Calculation of linearized power flows (MW):  Eq. (6).

⎡
⎢⎢⎣

P1−3
P1−4
P2−3
P2−4
P3−4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

33.6129
16.9578
−2.7143
−47.2811
−29.07927

⎤
⎥⎥⎦

Example:

P1−3 = 1x0.2 − 0.99459256x0.2 − 0.99459256x(−3)x6.4337x3.14159265/180 = 0.336129 pu

P1−3 = 0.336129x100 = 33.6129 MW

Table 3 shows the error between the Newton–Raphson power flow output and the DC power flow/linear power flow V-theta calculated
or every line in the system by Eqs. (51)–(53).

Table 3 shows the errors obtained with DC power flow/linear power flow V-theta, when Newton–Raphson power flow is used as the
eference method. The errors are calculated for every line using Eqs. (51)–(53).
The MW error range of the DC power flow presents an error greater than 2 MW (Eq. (51)) in line number 2 (lines 1–4) Linear power flow
-theta also has the highest error in line 2 and it is 0.92 MW.  The largest percentage error in MW is obtained with the DC power flow. The
rror is calculated at line 4 and it is over 14% (Eq. (52)). The absolute sum of errors in all lines also is largest with the results of DC power
ow and it is of 4.14 MW (Eq. (53)).
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Table 4
Results of the system of 39 buses.

From bus To bus Active
power flow
Newton
full

Active
power flow
linear
V-theta

Active
power flow
DC

PPerror

linear
V-theta (%)

PPerror DC
(%)

Perror linear
V-theta
(MW)

Perror DC
(MW)

9 39 51.5 46.9 46.7 8.93 9.32 4.60 4.80
31  39 52.5 56.7 57.3 −8.00 −9.14 −4.20 −4.80
31  2 −150.1 −154.1 −154.9 −2.66 −3.19 4.00 4.80

2  3 323.1 330.1 335.6 −2.17 −3.87 −7.00 −12.50
2 25 −223.9  −234.5 −240.5 −4.73 −7.41 10.60 16.60
2 30 −250.0  −250.0 −250.0 0.0 0.0 0.0 0.0
3 4  −30.0 −16.3 −14.5 45.67 51.67 −13.70 −15.50
4  5 −296.9 −280.2 −279.9 5.62 5.73 −16.70 −17.00
4  14 −233.3 −235.9 −234.6 −1.11 −0.56 2.60 1.30
5  6 −636.0 −616.8 −615.8 3.02 3.18 −19.20 −20.20
5  8 338.4 337.1 335.9 0.38 0.74 1.30 2.50
6  7 471.7 467.2 466.6 0.95 1.08 4.50 5.10
6 11  −242.5 −256.2 −257.0 −5.65 −5.98 13.70 14.50
6  1 −866.1 −826.9 −825.4 4.53 4.69 −39.20 −40.70
7 8 236.6  232.8 232.8 1.61 1.61 3.80 3.80
8  9 51.8 47.0 46.7 9.27 9.85 4.80 5.10

10 11  260.4 272.5 272.9 −4.65 −4.80 −12.10 −12.50
10  13 389.6 378.8 377.1 2.77 3.21 10.80 12.50
10  32 −650.0 −650.0 −650.0 0.0 0.0 0.0 0.0
13  14 391.1 379.9 378.0 2.86 3.35 11.20 13.10
14  15 155.9 143.0 143.4 8.27 8.02 12.90 12.50
15 16 −164.5  −177.6 −176.6 −7.96 −7.36 13.10 12.10
16  17 132.0 133.3 133.9 −0.98 −1.44 −1.30 −1.90
16 19  −254.0 −260.1 −260.0 −2.40 −2.36 6.10 6.00
16  21 −329.6 −333.3 −334.8 −1.12 −1.58 3.70 5.20
16  24 −42.7 −46.4 −45.1 −8.67 −5.62 3.70 2.40
17 18 128.4  134.9 129.9 −5.06 −1.17 −6.50 −1.50
19  20 374.0 372.5 372.0 0.40 0.53 1.50 2.00
19 33 −629.1  −630.9 −632.0 −0.29 −0.46 1.80 2.90
20  34 −306.9 −307.6 −308.0 −0.23 −0.36 0.70 1.10
21 22  −604.4 −606.8 −608.8 −0.39 −0.73 2.40 4.40
22  23 42.8 42.5 41.2 0.70 3.74 0.30 1.60
22  35 −650.0 −650.0 −650.0 0.0 0.0 0.0 0.0
23 24 353.9  356.2 353.7 −0.65 0.06 −2.30 0.20
23  36 −558.6 −559.4 −560.0 −0.14 −0.25 0.80 1.40
25 26  86.8 82.7 75.5 4.72 13.02 4.10 11.30
25  37 −538.3 −539.3 −540.0 −0.19 −0.32 1.00 1.70
26  27 278.6 283.8 277.0 −1.87 0.57 −5.20 1.60
26  28 −140.8 −145.0 −145.4 −2.98 −3.27 4.20 4.60
26  29 −190.2 −194.4 −195.1 −2.21 −2.58 4.20 4.90
28 29 −347.6  −351.2 −351.4 −1.04 −1.09 3.60 3.80

3

p
b
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fl
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c
t
fl
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o
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29  38 −824.8 −827.9 −830.0 −0.38 −0.63 3.10 5.20
Sum  of absolute values 266.50 295.60

. Test results

The proposed method has been applied to several test systems including IEEE systems. This paper presents results of power flow
roblems in eight systems that are used as traditional tests: Wood and Wollenberg test system (6 buses), New England test system (39
uses), IEEE test systems of 9, 14, 30, 57, 118 and 300 buses. Thus, these stated data systems, are accessible to the international community.
ll tests whose results are reported in this section have been carried out using three methods of power flows. Newton–Raphson power
ow, DC power flow, and linear power flow V-theta. The computer programs were written in MATLAB language, and they use the functions
parse (create sparse matrix), and tic, toc (measure performance using stopwatch timer). We  use a computer TOSHIBA, model A505 with

 processors Intel(R) Core(TM) i7 CPU Q 720 @ 1.60 GHz, subscore 7.0, memory (RAM) 4.00 GB, subscore 5.9, and primary hard disk 207 GB
ree (238 GB Total), subscore 6.9.

The results of the full AC power flow and DC power flow, in all simulations, were validated using a power flow software package:
etwork Analyzer (ANAREDE). The ANAREDE software package is marketed by the Electric Energy Research Center (CEPEL), Brazil.

By storing branch MW flows at final stage of the calculation, a post-solution history of the largest errors in these quantities was
onstructed. Aiming to analyze the most loaded lines in all our tests, we ignored all flows below of arithmetic mean of load/per bus, except
o systems of 39 and 300 buses that present arithmetic mean of load/per bus greater than 78 MW.  In these aforesaid systems, the power
ows below 30 MW were ignored. Initially we present the results of the power flows and errors in lines with the system of 39 buses (New
ngland power system). This system has the highest arithmetic mean of load/per bus, which is of 160.4 MW/per bus.

Table 4 shows the errors obtained with DC power flow/linear power flow V-theta, when Newton–Raphson power flow is used as the
eference method. The errors are calculated for every line using Eqs. (51)–(53). The system buses were renumbered and the bus number

ne is the swing bus.

It is possible to observe that the largest absolute percentage error of the DC power flow occurs along the lines 3–4 and it is 51.67%. The
argest absolute percentage error of power flow linear V-theta occurs on the lines 3–4, which is 45.67%. The biggest error in MW can occur
n a line different from the largest percentage error. Therefore, the largest absolute error of the DC power flow in MW occurs on the lines
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Table  5
Errrors due linear power flow solution.

No. of buses in system Linear power flow V-theta DC power flow

Max(abs(Perror)) (MW)  Max(abs(PPerror)) (%) PAerror (MW) Max(abs(Perror)) (MW)  Max(abs(PPerror)) (%) PAerror (MW)

6c 0.74 1.70 1.38 2.49 7.01 5.66
9a 4.26 5.96 8.97 4.54 6.34 9.28
14a 7.36 4.69 12.98 8.95 5.87 23.76
30a 9.22 5.32 19.56 12.23 9.53 37.31
39b 39.20 45.67 266.50 40.70 51.67 295.60
57a 6.08 5.95 36.78 9.57 12.61 72.28
118a 49.75 39.58 317.11 60.61 48.22 393.95
300a 360.32 155.45 3210.3 402.92 173.02 3684.1

a IEEE Standard Test System.
b New England system. Max(abs) is the maximum absolute value.
c Wood and Wollenberg system.

Table 6
Comparison of errors in terms of lines.

No. of buses in system No. of lines with MW > power flows ignored No. of lines with error lpf V-theta MW < error power flow dc MW Corresponding (%)

6 3 3 100
9  7 5 71.43

14  10 9 90.00
30  19 18 94.74
39 42 34 80.95
57  23 17 73.91

118 86 63 73.26

l
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T
T

300  278 193 69.42

pf V-theta – linear power flow V-theta.

–1 and it is 40.70 MW.  The highest absolute error of linear power flow V-theta also occurs on the lines 6–1, and it is 39.20 MW.  The sum
f absolute errors in the DC power flow is 295.60 MW,  while this sum in the linear power flows is 266.50 MW.

The linear power flow V-theta performs better than the DC power flow in 34 of a total of 42 lines, which is shown in Table 4. On the
ight lines, where the DC power flow produces better results, the differences in favor (absolute value of MW)  of the DC power flow, are
mall: lines 4–14 → 1.3; lines 14–15 → 0.4; lines 15–16 → 1; lines 16–19 → 0.1; lines 16–24 → 0.7; lines 17–18 → 5; lines 23–24 → 2.1 and
ines 26–27 → 3.6. While we consider the eight errors, where the linear power flow V-theta produces better results, the differences in
avor (absolute value of MW)  of the linear power flow V-theta, are higher than the values previously: lines 2–3 → 5.5; lines 2–25 → 6; lines
–4 → 1.8; lines 6–1 → 1.5; lines 10–11 → 1.7; lines 13–14 → 1.9; lines 16–21 → 1.5 and lines 21–22 → 2.

Table 5 presents a summary of the largest absolute error in percentages, as well as the largest absolute error in MW,  in each of the
imulated systems.

As can be seen in Table 5, in all systems the largest absolute error in percentage and MW are due to the DC power flow. As well as
he absolute sum of errors in the lines is greater for the results obtained with the DC power flow. In Table 5, the system of 300 buses had
he highest error both in MW and in percentage. The biggest error (MW)  occurs in line 7049-49. In this line DC power flow has a reverse
ow. The flow in this line obtained by using the Newton–Raphson power flow is 372.72 MW,  the value obtained by the DC power flow is
30.2 MW (negative value) and the value obtained by the linear power flow V-theta is of 12.4 MW (positive value).

Table 6 presents a comparison of errors in terms of lines for all systems simulated.Table 6 shows that in most lines the linear power
ow V-theta has better performance than the DC power flow. On lines where it does not, a situation similar to that seen in the system of 39
uses occurs, i.e. the differences in favor (absolute value of MW)  of the DC power flow are small as can be seen in the Figs. 2 and 3. These
gures show the profile of errors for the system of 57 buses and to system of 118 buses in MW.

As can be seen clearly in the figures cited the results obtained with the DC power flow shows the highest levels of errors.
We can see in Table 7, the total computing times for the systems simulated in the paper.

DC power flow is faster than linear power flow V-theta, as it was expected. However, the simulation times are acceptable, due to the

inear power flow V-theta. Today, there are computers faster than the computer used in the simulations. Therefore, the computing time
ay  be lower.

able 7
otal computing time.

Power system Computing time (s)

No. of buses No. of branches DC power flow Linear power flow V-theta

6 11 0.0023 0.0844
9  9 0.0023 0.0845

14  20 0.0025 0.0904
30  41 0.0028 0.0999
39  46 0.0029 0.1066
57 80 0.0031 0.1143

118  186 0.0050 0.1824
300 411 0.0189 0.6819
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Fig. 2. Active power flow (MW)  error – IEEE 57 test system.
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Fig. 3. Active power flow (MW)  error – IEEE 118 test system.
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. Conclusions

A novel linear power flow method is developed in this paper. This proposed method calculates the voltage magnitudes decoupled from
he voltage angles. The new linear decoupled power flow method was  tested together with the original DC power flow method, using
arious systems, including the IEEE test systems, compared with the Newton AC full power flow solution. The proposed method herein,
s superior to the classical DC power flow. The results from the new method gave very encouraging results in terms of “errors” in the line
ower flows, compared to the traditional dc method. It is expected that this new method could be applied to many applications in power
ystems, where the traditional DC method is now used.
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ppendix A.

.1. DC power flow

DC power flow is a linear problem. It neglects active power losses, and assumes that magnitudes of nodal voltages are equal. Furthermore,
oltage angle differences are assumed to be small. The only variables are voltage angles and active power injections. Due to the fact that
osses are neglected, all active power injections are known in advance. Therefore the problem becomes linear and there is no need for
terations. Consider expressions for the active power flows (Pkm and Pmk) in a transmission line:

Pkm = V2
k gkm − VkVmgkm cos �km − VkVmbkm sin �km (54)

Pmk = V2
mgkm − VmVkgkm cos �km + VmVkbkm sin �km (55)

If the terms corresponding to the active power losses are ignored, in Eqs. (54) and (55), the result is:

Pkm = −Pmk = −VkVmbkm sin �km (57)

The following additional approximations are often valid. Vk
∼= Vm ∼= 1 p.u., sin �km

∼= �km and bkm
∼= − (1/xkm)

Using these approximations to simplify the expression for the active power flow Pkm yields

Pkm = x−1
km

�km = �k − �m

xkm
(58)

However, such approximations are not always realistic. Firstly, the X/R ratio condition can be difficult to guarantee. The influence of
esistance increases with the decrease of voltage, which means that only the high voltage transport networks can withstand this condition.
oreover, voltages will most likely not be flat but will vary among buses, causing the voltage profile to be different from the assumed one.

ach of these assumptions has some influence on the accuracy of the power flow calculations [15].
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