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Abstract – This work presents the analysis, design, and 
experimental development of a single-phase inverter with 
high frequency transformer isolation and for a wide 
input voltage range. The high frequency input current 
ripple is mitigated by the use of a small input LC filter, 
and the low frequency current component injected by the 
inverter is attenuated by the voltage loop controller. The 
proposed topology can be used in dc voltage-sourced 
applications such as renewable energy and battery based 
systems.

Keywords – dc-ac conversion, high frequency isolation, 
wide input voltage range operation. 

I. INTRODUCTION
The dc-ac converters are particularly one of the most 

significant and studied class of static power converters. 
Typical applications are distributed generation, ac motor 
drives, and battery based systems. Several topologies are 
available in the literature, which can be classified according 
to the following characteristics [1]: 

- Number of phases: single-phase or three-phase; 
- Adjustment of the output voltage; 
- Commutation of the switches: hard or soft; 
- Presence or absence of isolation transformer; 
- Number of power stages. 
This work describes the analysis, design, and experimental 

results of a dc-ac converter that has characteristics such as: 
single-phase, adjustment of the output voltage, hard 
commutation of the switches, and high frequency isolation, 
applied in the implementation of a 400VA, 220Vrms, and 
400Hz power source from a 60-90Vdc battery input voltage. 
This equipment is currently operating in the trains of the 
FEPASA (Ferrovia Paulista S.A., Brazil).1

A. Single-Stage Topologies vs. Mutiple-Stage Topologies 
DC-AC converters can be classified in either single-stage 

or multiple-stage topologies. A single-stage dc-ac converter 
[2]-[11] is that one that has only one power processing stage, 
responsible not only for the output voltage adjustment, but 
also for the sine modulation of the output voltage. A typical 
example is the dual flyback inverter [7], shown in Figure 1. 
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A multiple-stage dc-ac converter is formed by several 
converters where each one has a specific function, e.g. 
output voltage adjustment and/or isolation and/or dc-ac 
conversion. They can be classified in three types: dc-ac-ac 
converters [12]-[13] (Figure 2), dc-dc-ac converters [14]-
[20] (Figure 3), or dc-ac-dc-ac converters (Figure 4). 

Fig. 1.  Dual flyback inverter. 

Fig. 2  Example of a dc-ac-ac topology. 

Fig. 3  Example of a dc-dc-ac topology. 

Single-stage dc-ac converters are typically used in low 
power applications [1]. Multiple-stage dc-ac-ac converters 
possess one high number of semiconductors, reducing the 
efficiency and increasing the cost. Multiple-stage dc-dc-ac 
converters have output in current, are applied in grid 
connected systems. Therefore, these topologies are not the 
scope of this work, which is focused on dc-ac-dc-ac 
structures.
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II. PROPOSED TOPOLOGY 
Figure 4 shows the block diagram representing a dc-ac-dc-

ac system. It is formed by three power stages, as each one of 
them can be implemented using a classical topology. One is 
supposed to define which structures must be employed. 

Fig. 4  Block diagram of a dc-ac-dc-ac system. 

The complete schematic of proposed topology is shown in 
Figure 5. 

Fig. 5  Proposed topology. 

A classical push-pull converter is used in the first stage, 
because the switches are not turned on simultaneously, and 
also due to the intrinsic isolation. 

A full-bridge rectifier is chosen in the second stage, due to 
the absence of central tap and the reduced blocking voltage 
across the diodes. To further reduce the blocking voltage, 
two secondary windings are employed in the transformer of 
the push-pull converter. 

The third stage is composed by a full-bridge inverter, once 
that a push-pull arrangement would require an additional low 
frequency transformer. A half-bridge topology is not 
adequate as well, due to the doubled input voltage. 

Three LC filters are employed. The first one is placed 
between the primary voltage source and the first stage, in 
order to assure reduced high frequency ripple of the input 
current. The second one is placed between the second and 
third stages, to provide the dc voltage link to the full-bridge 
inverter and also mitigate high frequency current flow 
through the previous stages. The last filter is placed in the 
load side. 

A dissipative RCD snubber is employed in the switches of 
the push-pull converter to preserve the semiconductor 

devices due to eventual voltage overshoot caused by the 
leakage inductance of the high frequency transformer. 

III. DESIGN PROCEDURE 
The prototype specifications and design assumptions are 

shown in Table I. 
TABLE I

Prototype Specifications and Design Assumptions 
Parameter Specification 

Input voltage range Vi=60-90V 
Rms output voltage Vo=220Vrms +/-5% 

Maximum output voltage THD <5% 
Apparent power So=400VA

Load power factor PF=1 
Output fundamental frequency fr=400Hz

Modulation index Ma=0.75 
Maximum input current ripple Ii=6%
Maximum input voltage ripple Vi=3V

Efficiency (push-pull converter) 1=0.9
Efficiency (full-bridge converter) 2=0.9

Switching frequency (push-pull converter) f1=40kHz
Switching frequency (full-bridge converter) f2=40kHz

A. Power Circuit Design 
The peak value of output voltage (Vo_pk) is given by (1). 

_ _2 311o pk o o pkV V V V  (1) 

The input voltage of third stage (Vr) is given by (2). 
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Considering the maximum duty cycle in the push-pulll 
converter equal to 0.45, the minimum turns ratio (n) is given 
by (3). 
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By convenience, the transformer turns ratio is chosen: 

8n  (4) 

Thus the minimum duty cycle (Dmin) in the push-pull 
converter is given by (5). 
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The peak current drained by the push-pull converter is 
given by (6). 
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The maximum and minimum average currents through the 
primary voltage source (Ii_max and Ii_min, respectively) are 
given by (7) and (8), respectively. 
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The rms current through filter capacitor C1 is given by (9). 
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The maximum equivalent series resistance of capacitor C1

(RC1) is given by (10). 
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The filter inductance (L1) is given by (11). 
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The rms value current through capacitor C2 is obtained by 
simulation and given by (12). 
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The peak output current (Io_pk) is given by (13). 
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Considering the voltage ripple across C2 as 1% of Vr, the 
maximum equivalent series resistance of C2 (RC2) is given by 
(14).
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The cut-off frequency of the second filter (ff2) must be 
established so that the components from 800Hz the input 
current inverter are blocked and allow a reasonable inductor 
filter size. For the given example this frequency is defined as 
110Hz and then inductance L2 is given by (15). 
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Considering the current ripple through inductor L3 as 35% 
of Io_pk, the respective inductance is given by (16). 
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In order to get a cut-off frequency around 4kHz in the 
third filter, filter capacitance C3 can be obtained from (17). 
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Table II lists the components used in the prototype. 
TABLE II

Components List 
Reference Component 

C1 470uF/250Vdc 
C2 100uF/450Vdc 
C3 1uF/250Vac 

Cs1 and Cs2 1nF/400Vdc 
Ds1 and Ds2 MUR240 

D1 to D6 MUR1100 
L1 100µH/8.5A 
L2 21mH/1.1A 
L3 2.27mH/1.8A 

Rs1 and Rs2 100 /3W
S1 and S2 IRFP460A 
S3 to S6 IRGB20B60PD1 

B. DC-AC-DC Control Loop Design 
The dc-ac-dc converter can be modeled by a buck 

converter, as shown in Figure 6. 

Fig. 6  Equivalent circuit modeling of the dc-ac-dc converter. 

The transfer function (TF) of the dc-ac-dc converter is 
shown in (18) and its Bode diagram is shown in Figure 7. 
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Fig. 7  Bode diagram of Gsh(s). 
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Where, 
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The open loop TF Gsh(s) is given by (24). 

( )sh sh m shFTLA s G s F H s  (24) 

Where Hsh(s) is the feedback TF and Fm is the modulator 
gain: 
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As the control goals are null steady state error and the 
mitigation of the low frequency ripple of the current through 
the inverter, a simple PID controller, shown in Figure 8, can 
be used. 

Fig. 8  DC-AC-DC controller. 

The zeros of the controller match with the poles of the 
system, the pole in zsh of the controller match with the zero 
of the system, and an additional pole added at the origin 
establishes null error in the steady state. The dc-ac-dc 
converter controller TF is given by (27). 
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The gain Kvsh must establish a crossing frequency (fcsh)
about 150Hz, in order to attenuate the 800Hz current ripple. 
Then, the Kvsh value é dado by (28). 
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Then,

5.6vshK  (30) 

Deciding the value of the Ra in 1k , the controller 
components can be obtained from expressions (31) to (34). 
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The Bode diagram of the resulting transfer function of the 
compensated system is shown in Figure 9. 

Fig. 9  Bode diagram of FTLACsh(s). 

Figure 10 shows the block diagram of the dc-ac-dc stage 
control. 

Fig. 10  Block diagram of he dc-ac-dc control. 
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C. Inverter Control Loop Design 
The TF of the dc-ac converter is given by (35). 
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Where, nominal output resistance (Ro) of the inverter is 
give by (36). 
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The feedback gain and the modulator gain are given by 
(37) and (38), respectively. 

1
100fbH s  (37) 

1 0.4m m
ref

F F
V

 (38) 

The open loop TF of the Gfb(s) is given by (39). 

fb fb m fbFTLA s G s F H s  (39) 

The Bode diagram of the FTLAfb(s) is shown in Figure 11. 

Fig. 11  Bode diagram of FTLAfb(s). 

As the control goals are null steady state error and to 
assure one high speed response, the PID controller shown in 
Figure 12 can be used. 

Fig. 12  Inverter controller. 

The zeros of the controller match with the poles of the 

system, and an additional pole added at the origin establishes 
null error in the steady state. The inverter controller TF is 
given by (40). 
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Establishing the crossing frequency as 8kHz, the 
controller gain Kvfb is given by (41). 

337 10vfbK  (41) 

By choosing Ra=470k , the controller components can be 
obtained from expressions (42) to (44). 
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Then, the Bode diagram of the open loop system with the 
designed controller FTLACfb(s) is shown in Figure 13. 

Fig. 13  Bode diagram of FTLACfb(s). 

Figure 14 shows the block diagram of the dc-ac-dc stage 
control.

Fig. 14  Block diagram of the inverter control. 
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IV. EXPERIMENTAL RESULTS 
Some experimental results are presented in this section. In 

Figure 15 one can see a low input current ripple through 
inductor L1 and low voltage ripple across capacitor C1.

Fig. 15  Voltage ripple across the filter capacitor C1 (1 – 50V/div) 
and current ripple across the filter inductor L1 (2 – 2.5A/div). 

Figure 16 shows the voltage and the current across the 
switches of the push-pull stage. The voltage across the 
switches of the push-pull stage does not contain considerable 
voltage peaks and stresses. The current waveform presents 
some oscillation due to the reverse recovery of the output 
diodes, but it is considered acceptable. 

Fig. 16  Voltage across the switch in the push-pull (1 – 100V/div – 
10us) and current through the primary winding of push-pull 
transformer (2 – 10A/div – 10us). 

The Figure 17 shows the input current drained by the 
inverter for full linear load.

Fig. 17  Input current waveform of the inverter (2A/div – 500us). 

Comparing Figure 17 with the Figure 15, it can be seen 
that the low frequency ripple is attenuated in L1 current, due 
to the voltage loop and the filter formed by L2 and C2. Figure 
18 shows the inverter output voltage and also the current 
through output inductor L3, both for full linear load. 

Fig. 18  Output voltage (1 – 200V/div – 1ms) and current through 
the filter inductor (2 – 5A/div – 1ms). 

In Figure 19 one can see the harmonic spectrum of the 
output voltage for full linear load and the total harmonic 
distortion (THD) is about 2.5%. 

Fig. 19  Harmonic spectrum and THD of the output voltage for full 
linear load. 

Figure 20 shows the output voltage and current through 
the filter inductor L3 for a load step of the 10% for 100% of 
the rated load. It can be seen an optimum load step response. 

Fig. 20  Output voltage (1 – 200V/div – 5ms) and current through 
the filter inductor L3 (2 – 5A/div – 5ms) for a load step of the 10% 
to 100% of the rated power. 
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Figure 21 shows the output voltage and load current for a 
nonlinear load. 

Fig. 21  Output voltage (1 – 200V/div – 1ms) and load current (2 – 
10A/div – 1ms) for nonlinear load. 

The harmonic spectrum and THD of the output voltage for 
non-linear load is shown in Figure 22. The total harmonic 
distortion is about 3%. 

Fig. 22  Harmonic spectrum and THD of the output voltage for non-
linear load. 

In Figure 23 one can see the obtained global efficiency 
curve. The efficiency is greater than the specified. 
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Fig. 23  Global efficiency curve. 

In Figure 24 one can see the commercial prototype 
developed.

Fig. 24  Prototype picture. 

V. CONCLUSION
This paper has presented a topology feasible for dc 

voltage sourced systems, where small input current ripple is 
necessary and high input voltage range exists. The low 
frequency component of the current injected by the inverter 
is attenuated by the LC output filter of the push-pull 
converter and by the design of the respective voltage loop 
controller.

The work has been supported by experimental results 
showing the low input current ripple, low output voltage 
THD and high efficiency. This equipment is currently 
operating in the trains of the FEPASA (Ferrovia Paulista 
S.A., Brazil). 
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